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Preface

This volume, which begins with Chapter 5, is a vector treatment of the principles
of mechanics written primarily for advanced undergraduate and first year graduate
students specializing in engineering. A substantial part of the material, however,
exclusive of obvious advanced topics, has been tailored to provide a first course for
sophomore or junior level undergraduates having two years of university mathe-
matics through differential equations, which may be taken concurrently. The book
also serves as a sound, self-study review for advanced students specializing in
mechanics, engineering science, engineering physics, and applied mathematics. It
is prerequisite, of course, that the reader be familiar with vector and elementary
matrix methods, the primitive concepts of mechanics, and the basic kinematical
equations developed in Volume 1, which comprises the first four chapters of this
two volume series. In addition, it is recommended that advanced students be fa-
miliar with the elements of tensor algebra and finite rigid body rotations treated
there in Chapter 3.

The arrangement of the subject into the separate parts kinematics and dy-
namics has always seemed to me the best didactic approach, and it still does.
Unfortunately, the luxury of a slow-paced two semester course on these subjects is
seldom afforded. Therefore, in a concentrated, fast-paced single semester course,
especially for a diverse group of undergraduates, a level and variety of topics may
be chosen for presentation to address student needs and to satisfy curriculum ob-
jectives. But a great deal of the subject matter also can be assigned first to reading
and later discussed briefly in lectures. Assigned reading of my discourse on the
foundation principles of classical mechanics, for example, might offer an oppor-
tunity for an interesting dialogue among students and the instructor. At the bottom
line, however, the classroom usage of this material must be assessed by the teacher
in keeping with the class level, the course objectives, the curriculum schedule, and
the desired emphasis.

Naturally, the presentation is influenced by my personal interests and back-
ground in mechanical engineering, engineering science, and mechanics. Conse-
quently;mysapproachydefinitelyzis;somewhat more sophisticated and mathemat-
ical than is commonly found in traditional textbooks on engineering mechanics.

vii



viii Preface

In keeping with this approach, the prerequisite mathematics, principally that of
the seventeenth and eighteenth centuries, is used without apology. Nevertheless,
aware that many readers may not have mastered these prerequisite materials, I
have exercised care to reinforce the essential tools both directly within the text and
indirectly in the illustrations, exercises and problems selected for study. Elements
of the theory of linear differential equations of the second order, for example,
are presented; hyperbolic functions are introduced and illustrated graphically; the
analytic geometry of conic sections is reviewed; and advanced students will find a
thoughtful discussion on the subject of elliptic functions and integrals applied in
several examples. These and other topics are illustrated in many physical applica-
tions throughout the book; and several exercises and problems expand on related
details. Instances where material may be omitted without loss of continuity are
clearly indicated.

This presentation of dynamics focuses steadily on illustrating the predictive
value of the methods and principles of mechanics in describing and explaining the
motion and physical behavior of particles and rigid bodies under various kinds of
forces and torques. The emphasis throughout this book is principally analytical,
not computational, though many numerical examples and problems are provided to
expose the relevant aspects of an example or to illustrate certain theoretical details.
Examples have been selected for their interest and instructive value and to help the
student achieve understanding of the various concepts, principles, and analytical
methods. In some instances, experimental results, factual situations, and applica-
tions that confirm analytical predictions are described. I hope the historical remarks
and several relevant short stories add interest and reality to the subject. Numerous
assignment problems, ranging from easy, straightforward extensions or reinforce-
ments of the subject matter to more difficult problems that challenge the creative
skills of better students, are provided at the end of each chapter. To assist the stu-
dent’s study of dynamics, answers to the odd-numbered problems are provided at
the back of the book.

It is axiomatic that physical intuition or insight cannot be taught. On the other
hand, competence in mathematical and physical reasoning may be developed so
that these special human qualities may be intelligently cultivated through study of
physical applications that mirror the world around us and through practice of the
rational process of reasoning from first principles. With these attributes in mind,
one objective of this volume is to help the engineering student develop confi-
dence in transforming problems into appropriate mathematical language that may
be manipulated to derive substantive and useful physical conclusions or specific
numerical results. I intend that this treatment should present a penetrating and
interesting treatise on the elements of classical mechanics and their applications
to engineering problems; therefore, this text is designed to deepen and broaden
the student’s understanding and to develop his or her mastery of the fundamentals.
However, to reap a harvest from the seeds sown here, it is important that the student
worksthrough;many;of the examples,andproblems provided for study. When teach-
ing this course over the years, I have usually assigned six problems per week, two



Preface ix

per class period, roughly ninety per semester. If the assignment problems chosen
range from easy to difficult, I don’t think it is wise to assign more. The mere under-
standing that one may apply theoretical concepts and formulas to solve a particular
problem is not equivalent to possession of the knowledge and skills required to
produce its solution. These talents grow only from experience in dealing repeat-
edly with these matters. My view of the importance of solving many problems is
expressed further at the beginning of the problem set for Chapter 5, the first chapter
of this volume. The attitude emphasized there is echoed throughout this text. It is
my hope that these books on kinematics and dynamics may provide engineering
students and others with solid mathematical and mechanical foundations for fu-
ture advanced study of topics in mechanical design analysis, advanced kinematics
of mechanisms and analytical dynamics, mechanical vibrations and controls, and
areas of continuum mechanics of solids and fluids.

The Contents of This Volume

Volume 2: Dynamics, concerns the analysis of motion based on classical
foundation principles of mechanics due to Newton and Euler, later cast in a gener-
alized energy based formulation by Lagrange. A fresh development of a classical
subject like this is seldom seen. I believe, however, that the reader will find within
these pages many fresh developments, beginning with my discussion of the fun-
damental classical principles of mechanics and concluding with the presentation
of the elegant analytical formulation of the Lagrange equations of motion. And in
between, the reader will find here a refreshingly different, consistent, logical, and
gradual development and careful application of all of the classical principles of
mechanics for a particle, a system of particles, a rigid body, actually any number of
particles and rigid bodies, subjected to various kinds of forces and torques. Some
unusual, hopefully interesting things to look for are sketched below.

Chapter 5: The Foundation Principles of Classical Mechanics, presents a
detailed study and fresh discussion of Newton’s laws of motion, Newton’s theory
of gravitation, the role of inertial reference frames, and Newton’s second law of
motion relative to the moving Earth frame. Further, two fascinating applications
of Coulomb’s laws of friction having engineering significance are presented. The
chapter concludes with an advanced topic borrowed from continuum mechanics,
here applied to deduce the general law of mutual interaction between two particles.
This interesting topic has not previously appeared in any textbook.

The kinematical equations characterizing the velocity and acceleration of a
particle in terms of rectangular, intrinsic, cylindrical, and spherical coordinates are
applied in Chapter 6: Dynamics of a Particle, in the formulation of the equations
of motion in a variety of special applications. Besides gravitational and frictional
forces; additional electromagneticsrelastic spring, and drag force laws are intro-
duced and illustrated in some atypical examples that include the mechanics of
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an ink jet printer and Millikan’s famous oil drop experiment. Of course, familiar
elementary problems, sometimes having a novel twist, appear here as well. The
elements of projectile motion with examples that include drag force effects and
the fanciful exploits of Percy Panther and Arnold Aardvark surely will attract at-
tention. Several additional distinctive examples include a nonlinear oscillator, the
finite nonlinear radial oscillation of a particle of an incompressible rubber tube,
and problems of motion relative to the moving Earth frame that include Reich’s
experiment on the deflection of falling pellets and Foucault’s experiment demon-
strating the rotation of the Earth. The projectile deflection problem is solved; and,
with this in mind, the historic tragic battle of the Falkland Islands is described.

The first integral principles of mechanics for a particle—impulse-momentum,
torque-impulse, work-energy, and the conservation laws of momentum, moment
of momentum, and energy—are developed in Chapter 7: Momentum, Work, and
Energy. Along with several typical applications, some advanced topics treated there
include an introduction to elliptic functions and integrals in the problem of the
finite amplitude oscillations of a pendulum. The isochronous cycloidal pendulum
and Huygens’s clock, and orbital motion and Kepler’s laws, are other interesting
examples.

The classical principles of mechanics and first integrals for a particle are
extended to study in Chapter 8: Dynamics of a System of Particles. The importance
of the center of mass of the system, first mentioned in Chapter 5, is now evident.
The two body problem correcting Kepler’s third law is a distinctive illustration.
In preparation for later work on rigid bodies, the moment of momentum principle
with respect to a moving reference point, first derived in Chapter 6 for a particle,
and the reduction to its simplest form, is carefully described. Several examples of
simple systems of particles are demonstrated.

The elements of tensor algebra, including the Cartesian tensor transformation
law, introduced in Volume 1, Chapter 3, are exploited in Chapter 9: The Moment
of Inertia Tensor. Here the inertia tensor and its general properties are studied and
applied to complex structured (composite) bodies. The center of mass concept for
a simple rigid body, first studied in Chapter 5, is extended to composite bodies as
well. The tensorial form of the parallel axis theorem is proved, and its interpretation
is illustrated in examples. The principal (extremal) values of the inertia tensor and
their directions are derived by the method of Lagrange multipliers; and their easy
geometrical interpretation in terms of Cauchy’s momental ellipsoid is described.
These topics play a key role in the general theory of rigid body motion. Some
advanced analytical topics on the principal values of general symmetric tensors and
the multiplicity of principal values and corresponding principal axes are explored
at the end.

Chapter 10: Dynamics of a Rigid Body, the most difficult of the subjects
treated in this book, focuses on Euler’s generalization of Newton’s principles of
mechanics, now extended to characterize the equations of motion for all bodies—
solids, fluids, gasses—buthereinrestricted principally to the motions of rigid solid
bodies. Euler’s laws are set down separately and discussed in detail, somewhat
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parallel to my earlier discussion of Newton’s principles; but there are sharp dif-
ferences. First, the principle of determinism includes both forces and torques, and
the third law of mutual interaction of both forces and torques follows as a theorem
from Euler’s first and second laws. The remaining developments, however, are
fairly standard leading to Euler’s nonlinear vector differential equation of motion
for a rigid body in terms of its moment of inertia tensor. The key role of the princi-
pal body axes in the simplification of Euler’s scalar equations is demonstrated. The
usual general first integral principles on impulse-momentum, torque-impulse, con-
servation of momentum and moment of momentum, the work-energy and energy
conservation principles for a rigid body are obtained. It is worth noting, however,
that two forms of Euler’s second law of motion with respect to a moving reference
point, seldom discussed in other works, are derived. Their reduction to the simplest
common case is thoroughly discussed, and several typical sorts of applications are
studied. Some advanced examples describe the effect of the Earth’s rotation in
controlling the motion of a gyrocompass, the stability of the torque-free rotation
of a spinning rigid body, the sliding, slipping and rolling motion of a billiard ball,
and the motion of a general rigid lineal body in a Stokes medium.

A careful, thorough introduction to Lagrange’s equations of motion for holo-
nomic dynamical systems is provided in Chapter 11: Introduction to Advanced
Dynamics. The general form of Lagrange’s equations, an energy based formu-
lation of the equations of motion, is first motivated in their derivation for a
holonomic system consisting of a single particle. The principle of virtual work re-
lates the generalized forces in these equations to the physical forces that act on the
particle. The work-energy principle, Lagrange’s equations for conservative sclero-
nomic systems, and their first integral principle of conservation of energy follow.
Precisely all of the same equations are shown to hold for any system of discrete ma-
terial points having any number of degrees of freedom. For conservative systems,
recognition of so-called ignorable coordinates in the Lagrangian energy function
leads immediately to easy first integrals of Lagrange’s equations. Generalized mo-
menta are introduced and Lagrange’s equations for each generalized coordinate
are recast in a form having the appearance of Newton’s second law in which the
Lagrange forces consist of the generalized forces and certain pseudoforces of the
sort encountered differently in earlier studies. Generalized first integral principles
of conservation of momenta and the generalized impulse-momentum principle
follow. All of the results are illustrated in several examples together with the phys-
ical interpretation of the terms. Lagrange’s equations for both conservative and
nonconservative general dynamical systems are then deduced from Hamilton’s
variational principle of least action. As a consequence, Lagrange’s equations are
immediately applicable to study the motion of rigid bodies; in fact, any dynamical
system consisting of any number of particles and rigid bodies. It is only necessary
to define the Lagrangian energy function, however complex, and to identify the
corresponding generalized forces. Accordingly, the Lagrange equations are ap-
plied.to formulate the equations.of motion for several such physical systems. The
theory of small vibrations for nondegenerate, multidegree of freedom systems is
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derived and demonstrated in an example. Finally, Lagrange’s equations are modi-
fied to account for the effect of Stokes type damping in a general formulation of the
Rayleigh dissipation function, and the result is illustrated in some concluding ex-
amples that include an application to the theory of small vibrations with damping.
This relatively brief introduction to advanced dynamics presents the reader with
tools adequate to pursue more advanced, abstract studies of analytical dynamics.

In every chapter throughout this work the reader will find a great many his-
torical remarks, annotations, and references on the several topics treated here. I
hope these little stories, digressions, and annotations will add life and bring to
the subject a reality not seen in most books of this kind. Countless examples and
problems are provided as aids to understanding and visualizing the details of the
theory; and, in most instances, a physical interpretation is presented or perhaps
some unusual effect is identified. This sort of discovery and prediction derived
from the principles of mechanics and leading to results that most often are not in-
tuitively evident, drive the purpose of the analysis. It is important that the student
cultivate the habit of attempting to interpret the physical phenomena or unusual
effects that emerge from problem analysis. Ample opportunity for the reader to do
so is provided within the problems provided at the end of each chapter. So far as I
am aware, the treatment of problems provided herein usually is quite different and
more thorough than found in other comparable sources known to me. Nevertheless,
by consulting the listed references or their own favorite books, both the teacher
and the student should be able to supplement the many examples and problems to
meet their special needs.

In writing this book, I have appealed over many years to numerous sources.
While I do not necessarily subscribe to their approach to mechanics, several of
the references on classical and engineering mechanics that I found particularly
helpful are cited at the end of each chapter, usually with annotations to describe
the substance of the work and to identify specific topics that may be consulted for
collateral study. The presentation has also benefited greatly from the very many
historical papers and books referenced there. I hope the acknowledgments are
complete. It is impossible, of course, to be precise in citing my specific use of
every source, and I apologize if I may have overlooked or forgotten a particular
reference.
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VYolume 2

Dynamics
The Analysis of Motion

Mechanics is the paradise of the mathematical sciences, because here we
come to the fruits of mathematics.

Leonardo da Vinci
The Notebooks




5

The Foundation Principles
of Classical Mechanics

I would mention the experience that it is exceedingly difficult to expound
to thoughtful hearers the very introduction to mechanics without being occa-
sionally embarrassed, without feeling tempted now and again to apologize,
without wishing to get as quickly as possible over the rudiments and on to
examples which speak for themselves. I fancy that Newton himself must have
felt this embarrassment. . ..
Heinrich Hertz
The Principles of Mechanics

5.1. Introduction

Dynamics is the theory of motion and the forces and torques that produce
it. This theory integrates our earlier studies of kinematics, the geometry of mo-
tion, with certain fundamental laws of nature that relate force, torque, and motion.
In this chapter the primitive concepts of mass and force introduced in Chapter 1
are related to motion through some basic principles commonly known as New-
ton’s laws. Sir Isaac Newton (1642—1727) in his Philosophiae Naturalis Principia
Mathematica (Mathematical Principles of Natural Philosophy), often referred to as
simply the Principia, published in 1687, formalized and extended earlier achieve-
ments of others by creating an axiomatic structure for the foundation principles of
mechanics. By the organization of problems around his fundamental laws, Newton
successfully demonstrated the application of his theory to the study of problems of
mechanics of the solar system. He thus began the idea that the motions of bodies
may be deduced from a few simple principles.

The formulation and application of Newton’s laws entail the use of analytical
methodsof differentialequationssSurprisingly, however, Newton never recorded or
applied his laws in any general mathematical form; and historians (e.g. Truesdell)
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have found no evidence to suggest that he was able to set up differential equations
for the mechanical systems he investigated. Others (e.g. Bixby) suggest that for the
benefit of scholars, in those times well-versed in geometry, Newton’s arguments
were laboriously worked out by geometrical methods, rather than in terms of his
emerging new calculus, so that mathematicians and scientists would be able to
understand his new ideas on the motions of bodies. In fact, it was not until 1750
that Newton’s laws for material points were first formulated more generally by
Leonhard Euler (1707-1783) as differential equations relating force, torque, and
motion for all bodies, including deformable bodies. Thus, it was not Newton; it was
Euler who demonstrated countless times how to set up mechanical problems as
definite mathematical problems formulated from basic, first principles. Therefore,
it is not uncommon nowadays that the basic laws of mechanics are often referred
to as Euler’s laws. The classical, mathematical principles of mechanics created by
Newton and Euler thus establish the fundamental laws governing the motions of
all bodies. They provide the foundation for our study of dynamics—the analysis
of motion.

The simplest kind of dynamical problem is to find the force needed to produce
a specified motion of a particle. The converse problem of finding the motion
arising from the application of known forces of various kinds is more difficuit.
This problem requires the solution of differential equations. Our earlier practice
with simple integration methods applied in kinematics, therefore, will prove useful
in the study of problems of this kind.

To formulate these types of problems, we need to know how to specify math-
ematically the nature of various kinds of forces that act between pairs of bodies.
These forces are of two general kinds, contact force and body force. The weight
of a body is a familiar example of a body force that arises from the mutual action
between pairs of separated bodies in accordance with Newrton’s law of univer-
sal gravitational attraction. This basic body force law is studied in this chapter.
Of course, two bodies may also interact by contact, i.e. by mutual touching. Ev-
eryone knows, for example, that when two blocks are pressed together, a force
tangent to their common surfaces must be applied in order to slide one block on
the other. But once the sliding has begun, the force needed to sustain the motion is
somewhat smaller than that required to initiate it. The fundamental laws that char-
acterize these familiar experiences are studied here too. These principles, called
Coulomb’s laws, relate the normal and the tangential components of the contact
force that acts between two bodies to oppose their relative sliding motion. Other
kinds of viscous, elastic, electromagnetic, and time varying forces are introduced
in the next chapter. In addition, we are going to find that certain pseudoforces act
on bodies having motion relative to an accelerating, rotating reference frame.

The effect of the motion of the frame of reference on the form of Newton’s
second law of motion is investigated. It turns out that our moving Earth frame
is not the reference frame with respect to which Newton’s laws hold. Therefore,
we-must-learn-how-the.governing laws-are to be modified so that they may be
applied to problems in any moving frame, including our Earth frame. In addition
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to aiding our understanding of the extent of the error that may be expected when
the motion of the reference frame is neglected, the theory will also reveal in later
applications some interesting and subtle physical phenomena that arise from the
Earth’s rotation. The idea that laws governing the internal forces between the parts
of a system should be independent of any external reference frame used to describe
them is expressed in the principle of frame indifference studied here in the context
of the mutual force that acts between two particles and depends on only their
spatial positions. Application of this idea leads to the most general form of the
law of mutual action between two particles as a function of only their distance of
separation.

Our main objective in this chapter is to study the foundation principles of
classical mechanics. The Newton—Euler laws of mechanics are here formulated
in a manner that parallels that introduced by Newton and generalized by Euler.
The content, utility, and the predictive value of these rules in relation to special
force laws, like those that govern gravitation and sliding friction for example, are
explored in their application to physical theory and problems, and in some cases
by comparison of their theoretical predictions with experimental observations. A
few introductory illustrations of these qualities are investigated here; and many
additional examples and practice problems and solution techniques for particle
dynamics are presented in Chapter 6. Some other useful principles of momentum,
work, and energy that derive from the primary Newton—Euler law for a particle
or center of mass object are presented in Chapter 7. The structure used in these
beginning chapters is extended in Chapter 8 to the motion of a system of particles.
The moment of inertia tensor is introduced in Chapter 9; and then Euler’s grand
generalization of Newton’s principles of mechanics are formulated for a rigid body
in Chapter 10. Our study ends in Chapter 11 with an introduction to the methods
of advanced dynamics. The formulation of Lagrange’s equations and Hamilton’s
principle for analytical mechanics are explored there. This is the point where books
on advanced dynamics usually begin. Construction of a foundation for these future
studies begins with one particle. First, it is recommended that the reader review
the primitive terms and concepts introduced on pages 3-7 in Chapter 1.

5.2. Mass, Momentum, and the Center of Mass

The mass of a particle, a system of particles, and a rigid body, and the
corresponding principle of conservation of mass for each of these is introduced.
The momentum of a particle, and the momentum and the center of mass of a system
of particles and of a rigid body are defined. The latter ideas are then applied to
learn how the momentum of a system of particles and of a rigid body are related
to the momentum of their respective centers of mass. These preliminary concepts
and.results.onthe.center.of mass.are.important to our future study of the classical
principles of mechanics.
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5.2.1. Mass and Momentum of a Particle

We recall from Chapter 1 that the mass m(P, t) of a particle P is a positive
scalar measure of its material content. The physical dimension of mass is denoted
by [M]. It is a postulate of Newton’s mechanics that the mass of a particle is
invariant in time, that is,

m(P,t) =m(P) 5.1

for all times t. This axiom is called the principle of conservation of mass. It
emphasizes that the mass of a particle is an invariant measure of its material
content alone. Of course, the mass of another particle may be different.

The momentum p(P, t) of a particle P in a reference frame ® is a vector-
valued function of time ¢ defined by the product of the mass m(P) of the particle
and its velocity v(P, t) in ®:

p(P,t)=m(P)v(P,1). (5.2)

Sometimes the momentum is called the linear momentum to distinguish it from the
moment of momentum introduced later on. It is seen from (5.2) that the momentum
vector has the physical dimensions [p] = [MV] = [MLT™']. Specific measure
units are reviewed in the Appendix following the References at the end of this
chapter and in the Problems.

5.2.2. Mass, Momentum, and Center of Mass of a System of Particles

We recall from Chapter 1 that a body 8 = { P} consisting of n discrete parti-
cles P, having mass my = m(P), k = 1,2, ..., n, is called a system of particles.
It is clear that mass is an additive scalar measure on 8. Hence, the mass m(8) of
the system of particles is defined by the sum of the masses my, of the particles Py

of B:
mp)=y_ m. (5.3)
k=1

The principle of conservation of mass (5.1) requires that the mass of the system is
constant: dm(B)/dt = 0. Clearly, in a system of particles the mass may vary from
one particle to another; and the mass of another system may be different.

5.2.2.1. Momentum of a System of Particles

By.(5:2),.each.particle Pi-has.amomentum p; = p(Py, t) = my vy for which
Vi = V(P, t) denotes the velocity of P, in ®. Therefore, the momentum of the
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! 0

Figure 5.1. Schema for the center of mass properties of a system of particles.

system B in frame ® is defined by

PB.O=) p=) mvi (5.4)
k=1 k=1

5.2.2.2.  Center of Mass of a System of Particles

The center of mass of a system of particles is an important concept that
enables us to reduce the momentum (5.4) of the system to the momentum of a
single, fictitious particle—a neat trick that proves most useful in future work. With
this objective in mind, consider a system of particles shown in Fig. 5.1 in frame
¢ = {F ;1 j} , a set comprising an origin point F and an orthonormal vector basis
I;, as defined in Chapter 1. Letx; = x( Py, t) denote at time ¢ the position vector of a
particle P, whose mass is my. The center of mass of a system of particles B = { Py}
is defined as the point in ® whose position vector x*= x*(8, t) is determined by

mBX" =) mix, (5.5)
k=1

wherein we recall (5.3) for the mass m(B) of the system. In this sense, the weighted-
average motion of the particles of the system is described by the motion x*(8, t) of
a single, fictitious particle of mass m(f), the mass of the system. Some properties
of the center of mass are discussed next.

We first note that the center of mass need not be a place occupied by a particle
of B, but it may be. Consider for example a system g = {P;, P,} of two particles
of equal mass m; = m; = m, one at the origin X; = 0 and the other at an arbitrary
place X, = d.in & at an instant.¢. Then.by (5.3), we have m(8) = 2m; and (5.5)
provides 2mx* = Zi=1 mX; = md. Hence, the center of mass of this system at
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the instant ¢ is at the place x* = d/2 in ®—a place that is not occupied by either
particle of 8. On the other hand, consider a system of three particles of equal mass
m; one at x; = 0, one at x, = d/2, and the other at x3 = d in ® at time ¢. In this
case, (5.5) shows that the center of mass of the system at the instant 7 is at the
place x* = d/2 occupied by the particle P;.

We show next that the center of mass is a unique point whose definition
is independent of the reference origin in ®. First consider the reference origin.
Identify another reference point O at p from F in @ in Fig. 5.1. Introduce x; =
p + p; and X* = p + p*, where p|, and p* are the respective position vectors of
the particle Py and of the center of mass C from O. Then (5.5), with the aid of
(5.3), becomes

n n

mB)p+p) =) mp+ ) mpl=mBp+ Y mipi.
k=1

k=1 k=1

It thus follows that for an arbitrary point O,

mB)p* =) mp;
k=1

has the same form as (5.5). Therefore, the definition (5.5) for the center of mass is
independent of the choice of the reference origin in .

Now let us choose O at the center of mass C so that p* = p; — p, =01in
Fig. 5.1. Then relative to the center of mass, we have

Y mip, =0, (5.6)
k=1

wherein py, is the position vector of the particle P, from C at time ¢. Clearly, (5.6)
simply states that the position vector of the center of mass from itself is the zero
vector.

It is now easy to prove that the center of mass is the only point with respect
to which (5.6) holds for a system of particles. Indeed, suppose there exists another
point C’, say, at the place r from C such that (5.6) holds. Then Y ;_, myry =0,
where 1y is the position vector of P, from C’. However, substitution of p, = r + 1}
into (5.6) shows that r = 0; that is, the points C and C’ coincide. Therefore, at
each instant, the center of mass of a given system of particles is the unique point
for which (5.6) holds. Plainly, if the system is altered in any way, so is its center
of mass.

5.2.2.3. Momentum of the Center of Mass of a System of Particles

We now derive an important result relating the momentum of a system of
particles to the momentum of its center of mass. Of course, the system of particles
is generally in motion in ® with momentum (5.4), in which v, = X;. Werecall (5.5)
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and define v* = x*(8, t), the velocity of the center of mass. Then, differentiation
of (5.5) with respect to time in ®, the mass of the system being conserved, and
use of (5.4), yields the important result

P =mBV =) mvi =p(B.1). (5.7

k=1

The vector p* defined by the first equation in (5.7) is the momentum of an imaginary
particle of mass m(f) that moves with the velocity v* of the center of mass.
This particle is named the center of mass particle (or object); and p* is called
briefly the momentum of the center of mass. The result (5.7) thus shows that the
momentum of a system of particles is equal to the momentum of its center of mass:

p(B.1) = p*(B,1).
Further, differentiation of (5.6) yields

> mipe =0. (5.8)
k=1

Hence, the momentum of a system of particles relative to its center of mass particle
is always zero.

Example 5.1. A system S = {P;, P», P;} consists of three particles with
mass m; = m, my = 2m, ms = 3m and having the respective constant velocities
vi =v(6,-7,0), vo =v(0,2, -3), v; = v(2, —1, —2) in frame ® = {F;I;}.
Determine the momentum of the system in &, find the velocity of each parti-
cle relative to the center of mass C, and thus confirm (5.8).

Solution. First recall (5.4) for the momentum of the system. The momentum
of each particle is determined by (5.2); and from the assigned data, we obtain

p1 = mvi = mv(6, —7,0), p2 = mavy = 2mv(0, 2, —3),
p3 = m3vs = 3mu(2, —1, =2). (5.9a)

Then, by (5.4), the momentum of the system in ® is given by
p(B.t) =pi1 +p, +p; = 6mv(2l — J — 2K). (5.9b)

The velocity of the particle Py relative to C is given by p, = v, — v*, in which
the velocity of C may be found from (5.7). Hence, with (5.3), the momentum of C is
p* = 6mv* = p(B, t); and use of (5.9b) yields v* = v (2I — J — 2K). Therefore,

PL=Vi—V =v4,-6,2), Py =V — v =v(-2,3,-1),
Pr=v3—v' =0, (5.9¢)
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identify the velocity of each particle relative to C in ®; and hence

3
> iy = mipy +mapy +mypy = mud, —6,2) + 2mu(=2.3, ~1) + 0 = 0,

k=1
(5.9d)
in agreement with the general result (5.8). g

5.2.3. Mass, Momentum, and Center of Mass of a Rigid Body

Let us consider a rigid body 2, and let dm(P) denote an additive parcel (or
element) of mass at the material point P. Then the mass of the body is defined by

m(%)s/ dm(P):/ p(P)dV(P), (5.10)

wherein dV(P) is the elemental material volume of 98 at P, and p(P)=
dm(P)/dV (P), the ratio of the element of mass at P to its element of volume at
P, that is, the mass per unit volume of %3, is called the mass density. The subscript
9B on the integral sign, here and throughout this volume, means that the integra-
tion, with appropriate limits, is over the bounded region defined by the body %.
Neither the mass density nor the material volume of a rigid body can change with
time, so the principle of balance of mass is satisfied: dm(98)/dt = 0. In general,
however, the density may vary from one material point to another. A rigid body %
is said to be homogeneous whenever its mass density is constant throughout %.
Thus, by (5.10), the mass of a homogeneous rigid body is simply the product of
the mass density and the material volume of 98, namely, m(98) = pV(9B), where
V(B) = [,dV(P).

5.2.3.1. Momentum of a Body

The momentum of a body element of mass dm(P) at P in ® isdm(P)v(P, t).
Hence, the momentum p(9B, t) of a body in a reference frame & is defined by

p(A, t):t—f Vv(P,t)ydm(P). (5.11)
B

In general, both the velocity and mass distributions must be known to effect
the integration of (5.11). Consider, for example, a rigid body %3 having a uniform
motion in the frame ®. In this case, the velocity of every particle of 43 is a constant
vector V(P, t) = v, so equations (5.11) and (5.10) yield p(%, 1) = v f% dm (P) =
m(9B)v. Hence, the momentum of a rigid body 23 having a uniform motion is the
same.as.that.of a single particle of mass m(98) moving with the constant velocity
v. We shall see next that this imaginary particle is the center of mass of the body.
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Figure 5.2. Schema for the center of mass properties of a body.

5.2.3.2.  Center of Mass of a Body

We shall soon discover that the dynamics of a rigid body involves the motion
of its center of mass, an important concept by which the momentum (5.11 ) of a
body may be replaced by the momentum of a single, imaginary particle situated at
its center of mass. With this in mind, let X(P, ¢) denote at time ¢ the position vector
of the material parcel dm(P) of abody % in a spatial frame ® = {Q;I;} shown in
Fig. 5.2. The center of mass of the body 9B is the unique point in & whose position
vector X* = x*(43, t) at time ¢ is determined by

m(B)X* (B, 1) = f X(P,t)dm (P), (5.12)
B

inwhich werecall (5.10). In this sense, the weighted-average motion of the particles
of the body is described by the motion x*(43, t) of a single, fictitious particle of
mass m(9B), called the center of mass particle. Some properties of the center of
mass are described next.

It is easy to prove that the definition (5.12) is independent of the choice of
reference origin Q in ®. Therefore, relative to the center of mass point itself, (5.12)
becomes

=0, (5.13)
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where p(P, t) is the position vector from the center of mass C to the parcel dm(P)
at P in frame ®, as shown in Fig. 5.2. Thus, by an argument similar to that used
for a system of particles, it follows that at each instant t the center of mass is
the unique point with respect to which (5.13) holds. Indeed, its unique location
in a rigid body is determined relative to a body reference frame ¢ = {O;i;} with
respect to which the position vectors in (5.12) and (5.13) are independent of time.
Therefore, the center of mass of a rigid body is a unique point determined by the
geometry and material content of that body alone—it always occupies the same
place in the body reference frame relative to which (5.13) holds. The center of mass
moves with the body, and, of course, its position vector with respect to different
spatial reference frames will naturally vary.

Exercise 5.1. (a) Show that the definition (5.12) for the center of mass of a
body is independent of the choice of reference origin. (b) Prove that the center of
mass is the unique point for which (5.13) holds. O

The center of mass of a homogeneous body often may be easily identified.
For a homogeneous body, the constant mass density may be eliminated from (5.12)
to obtain at time ¢ the familiar formula for the geometrical centroid of PB:

V(B)X (B, 1) = f x(P,t)dV (P), (5.14)
%

wherein V(28) is the material volume of 9. Thus, the mass center of a homoge-

neous body coincides with its centroid. Of course, very often, the centroid is easy

to identify.

In general, the center of mass need not be a place occupied by a particle
of PB. It is clear, for example, that the center of mass of a homogeneous, circular
cylindrical tube is at the geometrical center on its axis—plainly a place that is
not occupied by a particle of the tube. On the other hand, the center of mass
of a similar solid cylinder has the same location. These assertions are evident
from symmetry considerations. Nevertheless, it is instructive to review integration
methods typically involved in the use of (5.12) or (5.14), because similar techniques
are used for both homogeneous and nonhomogeneous bodies for which symmetry
may not be so evident.

Example 5.2. (i) Compute the location of the center of mass of the homoge-
neous, cylindrical tube described in Fig. 5.3. (ii) Find the center of mass when the
density varies linearly from the constant value p, at z = 0 to 2p, at z = £.

Solution of (i). The circular tube shown in Fig. 5.3 has an inner radius r;,
outer radius r,, and length £. Because the material is homogeneous, the center of
mass is at the centroid determined by (5.14) in which

V(B) =l (r}—r7) (5.15a)
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(a) Volume Element

Body Frame ¢

Figure 5.3. Geometry for determination of the center of mass of a tube.

is the material volume of the tube. It is natural to introduce cylindrical coordinates
inthe imbedded frame ¢ = {O; i}, whose origin is at the base of the tube. Then the
position vector X (P, t) = x(P) of a particle P of % and the elemental volume at
P in Fig. 5.3 may be expressed as x (P) = r(cos @i + sin¢j) + zk and dV (P) =
rdrd¢dz. Hence, with (5.14), the center of mass location x*(43, t) = x*() in ¢
is given by

2 4 ro
V(B)x*(B) = f / f (r cos i+ rsin@j+ zK)rdrdzd¢. (5.15b)
0 0 Jr;

The first two integrals in the angle ¢ vanish. Therefore, as anticipated from
the symmetry, the center of mass lies on the axis of the tube. Integration of the
remaining term in (5.15b) and use of (5.15a) yields x*(%B) = £/2k, that is, the
center of mass is at the center of the void. We notice also that x* is independent of
the radii of the tube, so the location of the center of mass in ¢ is the same for all
radii. In particular, for a solid cylinder for which r; = 0, x*(98) = £/2k holds as
well. Of course, whatever reference point may be used, the center of mass of the
rigid tube remains at the same central position; and as the tube moves in space, its
center of mass retains its central location in the moving, imbedded frame.

In problems of this kind it is often easier to simplify the integration in (5.15b)
by use of the method of slices. The application of this method to the previous
homogeneous problem is left as a review exercise for the reader to show that
IX*(B).= f(f zkdz, which yields x*(#).= £/2k, as before. We next apply this
method to solve the variable density problem.
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Solution of (ii). We are given that the mass density of the tube varies linearly
from p, at z = 0to 2p, at z = £, and hence p = p, (1 + z/£). Because p varies
only along the tube’s length, the simultaneous geometrical and mass distribution
symmetries about the tube’s axis imply that the center of mass is on the axis.
Therefore, x* = y* = 0 and only the z* component need be found. Hence, (5.12)
yields

m(%’)z*:/ zdm. (5.15¢)
B

The method of slices shows that for the annular ring in Fig. 5.3 the volume
element dV = Adz, where A = (r2 — r?) is the constant area of the ring. The
mass is then found by (5.10):

L
z 3
m(B) = poA/O (1 + Z> dz =3 Ap.t,

and the right-hand side of (5.15c) becomes

4
z 5
= p,A 1+ - =—0A2.
/%zdm 0 foz(-l—e)dz 6’0 l

Therefore, by (5.15¢), the center of mass is on the axis of the tube at z* = 5£/9
from its base at O. Clearly, the center of mass is not the centroid, which is located
at ¥ = £/2 in accordance with (5.14). O

5.2.3.3.  Momentum of the Center of Mass of a Rigid Body

We shall now derive an important result relating the momentum of a rigid
body to the momentum of its center of mass. The body is generally in motion in
@ with momentum defined by (5.11), in which v(P, t) = X(P, t). The motion of
the center of mass is defined by (5.12), and hence v*(&, 1) = X*(9, t) defines the
velocity of the center of mass. Thus, differentiation of (5.12) with respect to time
and use of (5.11) for a rigid body yields the important result

P (B, 1) = m(B)WV (B, 1) = f v(P,t)dm(P) = p(%, 1). (5.16)
B

The vector p*(43, t) defined by the first equation in (5.16) is the momentum of a
fictitious particle of mass m(98) that moves with the velocity v*(48, t) of the center
of mass. OQur imaginary particle is sometimes called the center of mass particle (or
object). Hence, p* is called briefly the momentum of the center of mass. The result
(5.16) thus shows that the momentum of a rigid body is equal to the momentum of
its center of mass: p(B,t) = p* (9B, t).

Moreover, differentiation of (5.13) in the spatial frame ¢ yields

f p(P;Hydm (P) = 0. (5.17)
B
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Hence, the momentum of a body relative to its center of mass in ® is always
zero.

The definitions (5.10) and (5.11) may be readily extended to a deformable
body whose volume and density may vary with time, and for which similar center
of mass properties hold at each instant. In this case, however, greater care must be
exercised in differentiation of the integrals in (5.12) and (5.13) because the region
2B of the integration over the deforming body varies with time; and the location
of the center of mass will vary with the deformation. Of course, the body region
9B for arigid body is the same for all time. Deformable bodies are not studied in
this text.

5.3. Moment of a Vector About a Point

The moment of a vector about a point occurs frequently in future work.
This operation is first defined in general terms; and the transformation rule that
describes the effect of a change of the reference point follows. The familiar idea
of the moment of a force about a point is then reviewed; and the moment of
momentum vector is introduced in the next section.

We start with the general idea. Let x¢ (P) be the position vector of a point P
from a point Q, and let u (P) denote a vector quantity at P in Fig. 5.4. The moment
about Q of the vector u(P) is a vector entity i, (P) defined by the rule

ko (P)=xg(P) xu(P). (5.18)

This vector is perpendicular to both Xy (P) and u (P) . It is represented in Fig. 5.4
as a vector line with an arrow turning about it in the right-hand sense of (5.18).

u(P)

Figure 5.4. Schema for the moment of a
vector about a point.
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5.3.1. Reference Point Transformation Rule

The vector p, (P) depends on the choice of Q. The moment of the same
vector u(P) about another reference point O in Fig. 5.4 is given by

Ko (P) =X (P) xu(P),

where X (P) is the position vector of P from O. Itis seen in Fig. 5.4 thatxo(P) =
rog + Xo(P), in which rpg = ro(Q) is the position vector of Q from O. Hence,
substitution of this relation into the previous equation and use of (5.18) yields the
transformation rule relating the moments of the same vector u(P) about the points

O and Q:
Lo (P) =g (P)+rop xu(P). (5.19)

It is seen that p (P) = pg (P) when and only when the nonzero vector rog is
parallel to u(P).

5.3.2. Moment of a Force About a Point

We recall the familiar idea of the moment of a force about a point. In Fig. 5.4,
let u(P) = F(P) denote a force acting on a particle P whose position vector from
point Q is Xg (P), and write py (P) = Mg (P). Then, by (5.18), the moment
about Q of the force F (P) is the vector Mg (P) defined by the rule

My (P)=xg (P) x F(P). (5.20)

The moment vector is a measure of the turning or twisting effect of the force about
the reference point. Hence, the moment of a force is also called the forque; its
physical dimensions are [Mg] = [FL].

If a is a vector from Q to any point A on the action line of F(P), the vector
defined by r = xo(P) — a is parallel to F(P). It thus follows from (5.20) that
My(P) = a x F(P) holds for any point A on the action line of the force acting
on P. Therefore, the moment of the force ¥(P) about Q is independent of the
actual point of application of the force along its line of action; and hence only
the component of Xg (P) that is perpendicular to F(P) determines the torque of
F(P) about Q. Thus, in abbreviated notation, the magnitude [MQ| = |xQ| |F|
sin < xg, F > of the moment vector My, is equal to the product of the magnitude
of the force F = |F| and the perpendicular distance d = ]xQ| sin < xg, F > from
QO to the action line of F, where < xp, F > denotes the smaller angle between X
and F, as usual; that is, |MQ| = Fd, a familiar elementary rule.

The definition (5.20) may be applied to each particle Py of a system of par-
ticles. In this case, the total, or resultant, moment about a point Q of the several
forces F; = F (Py) that act on a system of » particles § = { P;} is defined by the
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sum of the moments about Q of all of the forces F; that act on B:

Mo(B) =) Mg (P)=) xo x F, (5.21)
k=1 k=1

where Xgx = X (P) is the position vector of particle P, from Q; and the total, or
resultant, force is defined by F(8) = ) ;_, Fx.

The same rule may be applied to determine the total moment about a point Q
of all the concentrated and distributed forces that act on a rigid body 2. For the
elemental force distribution dF, (P) acting on a material parcel at P, for example,
the total torque about a point Q of the distributed force is defined by

My(%B) = f Xo (P) x dF, (P), (5.22)
B

where X (P) is the position vector from Q to the parcel at P. A formula similar
to (5.21) holds for n concentrated forces Fy () acting on 3.

Now consider the point transformation rule. Clearly, the turning effect of a
force about another reference point at O in Fig. 5.4 will be different from that
about Q. The transformation rule (5.19) shows that the moment of the same force
about the reference point O is related to its moment (5.20) about the point Q by
the rule

My (P) = Mg (P) +rop X F(P). (5.23)

We recall that rog is the position vector of point Q from O; and hencerpg x F (P)
is the moment about O of the total force as though it were placed at Q.
The same point transformation rule applies to (5.21) and (5.22); thus,

Mo(RB) = MQ(.%) + Trog X F(%), 5.24)

where the total force acting on %, namely, F(9B) = F;(2B) + F.($), is the sum
of the total distributed force F (%) = f s ¥4 (P) and the total of all concentrated
forces Fo(B) = > i Fi(PB). Also, M(AB) and M () are the total moments
about points O and Q of all of these forces. Therefore, by (5.24), the total moment
of force about a point O is equal to the total moment of force about point Q plus
the moment about O of the total force placed at Q.

The rule (5.24) relates the moments of the force about any two points. In
particular, if O is the center of mass at C, then rog = —rgc = "XE(%) and
(5.24) is written

Mo (#B) = My(2B) + Mc(A), (5.25)

in which M¢(98) is the total moment of force about the center of mass and MZ(;%’)
is the moment about Q of the total force placed at the center of mass:

M (B) = x(B) x F(B). (5.26)
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Thus, in physical terms (5.25) shows that the total moment of force about any point
Q is equal to the moment about Q of the total force placed at the center of mass
Dplus the total moment of force about the center of mass.

5.3.3. Equipollent Force Systems

Now consider two systems of forces and torques. These systems are said to be
equipollent if and only if they have the same total force and the same total torque
about the same point. That is, a system A with total force F4 and total torque M‘é

about a point Q is equipollent to a system B with total force F2 and total torque
Mg about the same point Q when and only when

F* =F” and Mj = M}, (5.27)

It follows from the point transformation rule (5.23) or (5.24) that if two force
systems are equipollent with respect to a point Q, they are equipollent with respect
to any other point O.

We know from (5.20) that the moment about Q of a single force is perpen-
dicular to the force and to the position vector from Q to its point of application. In
general, however, this is not true for a system of forces—the total torque M about
a point Q of a system of forces generally is not perpendicular to the total force act-
ing on the system. Here we focus on the special case when the system of forces A is
such that M, - F4 = 0; then, by (5.27) the same holds for the equipollent system B.
Consider, for example, a distributed system of forces F& (%) = F;(98) with a total
torque Mg(%’) equal to (5.22) such that Mg(%’) -FB($) = 0. Then, this system
is equipollent to a single force F4(48) = P located at distance from Q such that

P= / dFy(P) = Fo(B), (5.28)
B
M)(B) =Xy x P = /% Xg(P) x dF4(P) = M(%B), (5.29)

where the locus of the unknown vector Xy from Q traces the line of action of
P. Of course, Xy is necessarily perpendicular to Mg (9B). Now, bearing in mind
that only the component of X, perpendicular to the line of action of the force P
influences the torque about Q, the relation (5.29) determines the place iz), say, on
the line from Q perpendicular to P, called the center of force with respect to Q,
through which the force P must act to produce the same total torque about Q. Of
course, the center of force with respect to another moment center at O, say, though
also on the line of action of P, will be different. Notice that (5.29) may be written
as Xp X Fy(B) = f% Xo(P) x dF4(P). Specifically, for any system of planar
forces or for any system of parallel forces, the total moment of the forces about an
arbitrary pointis-plainly-perpendicularitorthe total force; therefore, in accordance
with (5.28) and (5.29), each of these systems may be reduced to a single force
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Figure 5.5. A homogeneous, thin rigid rod under a uniformly distributed load.

acting at its center of force. Clearly, for a system of discrete forces, the procedure
is similar. (See Problem 5.35.) For further discussion on the reduction of force
systems for the general case see the referenced texts on statics.

Example 5.3. A homogeneous, thin rigid rod of length £ is supported at one
end by a smooth hinge at Q and is subjected to aload of magnitude y per unit length
distributed uniformly over the region [a, £] shown in Fig. 5.5. (i) Find the force
system with respect to Q that is equipollent to the distributed load. (ii) Determine
the moment of the distributed load about the center of mass of the rod at C.

Solution of (i). The total force F4 = P equipollent to the distributed load
F? = F () for which dF;(P) = ydxj is given by (5.28). Thus,

¢
P= / ydxj =y — a)j. (5.30a)

The total moment of the distribution about the hinge point Q is given by (5.22) in
which xo(P) = xi+ yj;

L
M5(%B) = f xi X ydxj= %(@2 — k. (5.30b)

Of course, for the system B only the component xi of Xy (P) that is perpendicular
to the distribution contributes to the torque about Q.

Notice that this is a system of parallel forces, and Mg(%’) is perpendicular to
P. Thus, with Xg = i + yj and (5.30a), we may write M’é =XoxP=xy( -
a)k. Here we see that for the system A only the component Xi of X, that is
perpendicular to P contributes to the torque about Q. Thus, with (5.30b), (5.29)
yields ¥ = %(6 + a); that is, with respect to Q, the center of force )'(*Q for P is at

X =3¢+ a)i=[a+1i¢-a)i (5.30¢c)

The line of action of P is traced by Xp = X7, + yj for all values of y. Equation
(5:30c) shows:that:.the center-of forceforithe uniformly distributed load is at the
geometrical center of the loaded portion of the rod in Fig. 5.5. The force system
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consisting of the single force P acting at the center of force X7, in (5.30c) is
equipollent to the assigned uniformly distributed force system; it consists of the
same total force (5.30a) and produces the same total moment about Q in (5.30b).

Solution of (ii). The moment of the same distribution about point C may be
found from the transformation rule (5.25). In accordance with (5.26), consider the
load P placed at the center of mass of the homogeneous rod at x, (%) = %Iii, and
recall (5.30a) to determine Mz)(%) = X*Q xP= %yﬁ(ﬁ — a)k. Then by (5.25) and
(5.30b), we find

MZ(B) = M (B) — My(B) = y%(ﬁ —a)k. (5.30d)

The same result may be obtained by our noting that the equipollent system
consists of the single force (5.30a) acting at X7, in (5.30c). Hence, its moment about
Catxp = %Ki is given by (X — Xp) X P = %ya(( — a)k, which is the same as
(5.30d). O

Finally, notice that if F(%) = 0, then (5.24) shows that Mo (%) = My(%)
and hence the resultant moment is independent of the choice of reference point.
In this case, the force system is called a couple. A force system consisting of a
noncollinear pair of equal and oppositely directed forces is a familiar example.
If both F(#) = 0 and M(%) = 0, then My(%) = 0 as well. In this case the
resultant moment with respect to any reference point vanishes, and the force system
is said to be equipollent to zero. It is an exercise for the reader to show that any force
system can be reduced to a single force acting at an arbitrary point together with a
couple. A torque M, induced by essentially twisting a body about an axis at a point
Q is called a concentrated couple. Tightening a screw in a wooden body by twisting
the screw about its axis is a physical example that may be modeled as a concentrated
couple acting on the wooden body. We may think of a concentrated couple at Q as
a pair of equal and opposite, noncollinear forces of very large intensity and having
a very small moment arm, the perpendicular distance between the force pair,
at Q.

None of the foregoing results for a body require that it be rigid. Moreover,
although explicit dependence on time ¢ is not indicated, it is clear that all of the
foregoing vector entities also may vary with time. Another useful application of
the moment of a vector about a point follows.

5.4. Moment of Momentum

Here we introduce an important vector quantity called the moment of
momentums The;moment,of momentumyof a particle, a system of particles, and a
body are defined in turn.
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P(Pt)=m(P)v(Pt)
hO(P,t) p
m(P)
K
®
l.‘————“’-—E
J

Figure 5.6. Schema for the moment about a point O of the momentum of a particle P relative to frame ®.

5.4.1. Moment of Momentum of a Particle

Let xp (P, t) = x (P, t) denote the position vector of a particle P from an
arbitrary spatial point O in a reference frame ® = {F;I;} shown in Fig. 5.6. The
velocity of P relative to & is given by v(P,t) = X(P, t), where X (P, 1) is the
position vector of P from F, as usual; and the momentum of P is defined by
(5.2). In accordance with (5.18), the moment about point O of the momentum of
P relative to ®, denoted by ho (P, t), is a vector-valued function of time defined
by

ho (P,t)=x0 (P, 1) xp(P,t) =x(P,t) xm(P)v(P,t). (5.31)

Notice that two reference points are involved in this definition, the origin F of frame
® and the spatial point O. The moment about reference points O and Q of the same
momentum vector p(P, ) are related by hp (P, t) = ho(P,t) +rop X p(P, t)in
accordance with the transformation rule (5.19).

The moment of momentum is also known as the angular momentum, a term
frequently used in other texts. It follows from (5.31) that moment of momentum
has the physical dimensions [ho] = [H] = [ML*T"'].

5.4.2. Moment of Momentum of a System of Particles

Each particle of a system 8 = { P;} of n particles has a moment of momentum
about point O given by (5.31), so that hgy = ho (P, 1) = Xox X pr, Where
Xor=rXo(Pet)rissthespositionsvectorsof P, from O, and py = mevy = m Xy
is its momentum relative to ®. Relative to a frame ® = {F;1;}, the moment of
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momentum ho(B, t) of a system of particles about a point O in ® is defined by

n

ho(B.1)=) hor =) Xox X P = )Xok X mivy. (5.32)
k=1 k=1

k=1

Example 5.4. At an instant of interest fy, the three particles described in
Example 5.1, page 9, are situated at xp; = (0,0, —1), Xp» = (=3, =2, 2), and
Xo3 = (6, —2, —4) from a point O located at B =(2, —1, 3) from F in frame
® = {F;1;} . Compute the moment of momentum of the system about O at .

Solution. The moment about O of the momentum of a particle is determined
by (5.31). Thus, for the system of three particles with momenta (5.9a), we find

ho; =x01 X p1 = K xmv(6l-7)) =mv(-71-6]),

I J K
hoy =xpy xp2=2mv|-3 -2 2 | =2mv(2I-9J-6K),
0 2 =3
I J K
hos =xp3 xp3=3mv|6 -2 —4|=6mv(2J—-K).
2 -1 =2

Then, by (5.32), the moment of momentum of the system about point O in ® is
ho(B, %) =ho1 +ho2 +hpsz = —3mv (I +4]J + 6K).
O
Exercise 5.2. What is the moment of momentum about F in  for the system

of particles described above? Derive the reference point transformation rule for
the moment of momentum of a system of particles. ]

5.4.3. Moment of Momentum of a Body

Consider a body 43 in Fig. 5.7 and recall that the momentum in @ of a parcel
of mass dm(P) of & at P is defined by v(P, t) dm(P). Thus, for a body 9B the
moment of momentum about a point O in ® = {F;I;} is defined by

ho(%,1) = / Xo (P,t) x v(P,t)dm (P). (5.33)
B

Herein x¢ (P, t) = X (P, t) is the position vector of the material point P from the
point O in ® and v(P, t) = X(P, 1)isits velocity relative to ®. While in this book
we shall be concerned only with bodies that are rigid, the definitions (5.11) for
the;momentumyand(5:33).forthe;moment of momentum of a body hold more
generally for all deformable solid and fluid bodies.
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Figure 5.7. Schema for the Moment about a
point O of the momentum of a body % relative
to frame &.

Example 5.5. Find the moment about O in ¢ of the momentum of a body
having a constant translational acceleration relative to ®.

Solution. Since a(P, 1) = a*(9%) is a constant vector for all particles of %,
the translational velocity v(P, t) = v*(%, t) = a*t + v;(9) is also the same for
all particles of %, where v(P, 0) = v;;(%) is the translational velocity of the center
of mass of 23 initially. Hence, (5.33) may be written as

ho (8,1) = / Xo (P, t)dm (P) x v*(%, 1).
B

Recalling (5.12) and (5.16), we obtain
ho (B, 1) =x3, (B, 1) x m(B)V (B, 1) =X, (B, t) x p* (%, 1),

in whichx7, (43, 1) is the position vector of the center of mass from O. This equation
has the same form as (5.31) for a single particle. Thus, with respect to an arbitrary
point O, the moment of momentum of a body having a uniform translational
acceleration is equal to the moment of momentum of its center of mass. d

The forgoing concepts on the mass, momentum, and moment of momentum
of a particle, a system of particles, and a body have been assembled here for future
convenience and to emphasize their parallel definitions and structure. These ideas,
including the notion of the center of mass of a system and a body, will also be
helpfulyin ourintroductionsand,discussion of the basic laws of mechanics to be
studied next. Their main thrust, however, will appear later as the theory unfolds
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leading eventually to the analysis of the motion of a system of particles and of a
rigid body.

5.5. Newton’s Laws of Motion

The structure of classical dynamics rests upon three foundation axioms
introduced by Sir Isaac Newton in 1687. These are known as Newton’s laws of
motion. In their original form, however, Newton’s principles are inadequate for the
study of the motion of a rigid or a deformable body. These applications require a
brilliant generalization introduced by Leonhard Euler in 1750 and thereafter. Here
we follow the course of classical developments and begin with an introduction to
the foundation principles of mechanics for a particle.” Principles for systems and
continua are discussed briefly below and in greater detail in later chapters. In the
meanwhile, we shall see in the following two chapters that our subject is rich with
interesting and useful results that derive from the following principles of classical
mechanics.

1. Thefirstlaw of motion: In every material universe, the motion of a particle
in a preferential reference frame ® is determined by the action of forces
whose total vanishes for all times when and only when the velocity of the
particle is constant in ®. That is, a particle initially at rest or in uniform
motion in the preferential frame ® continues in that state unless compelled
by forces to change it.

2. The second law of motion: There exists a material universe, called the
world, wherein the total force F(P, t) exerted on a particle P in the pref-
erential frame ® is equal to the time rate of change of the momentum of P
in ®:

dp(P,t) d
P TERRT [m (P) v(P,1)]. (5.34)

3. The law of mutual action: To every action force A there corresponds an
equal and oppositely directed reaction force R. That is, the mutual actions
of two particles, one on the other, are oppositely directed vectors: R = —A.

F(P,t) =

These foundation principles characterize a material universe that is intended
to model the physical world, the real world in which we live. Indeed, a large body
of practical experience and the test of many experiments have shown that these

* In the statement of his laws, Newton uses the term “body” or “bodies”. The least of these, however,
is a single particle; and we shall see later on that for a body of finite size the laws may be stated in
terms of its center of mass particle. Moreover, we recall that Newton’s theory focuses principally on
its'applications to the motions of ‘celestial' bodies whose dimensions are small compared with their
enormous distances of separation, so heavenly bodies are usually modeled as particles.
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laws model very well mechanical phenomena in the real world. Therefore, they
are employed universally with confidence in their predictive value. On the other
hand, there may exist other material universes where these rules do not hold, or
they hold only approximately. We shall say more about this later on. Let us look
more closely at their content.

5.5.1. The Material Universe and Forces

In analytical terms, the material universe is the set %/ = { O} whose elements
Oy, are material objects; and a body 4 is a subset of 7 the least of which consists
of a single particle P. Forces can exist only in the presence of pairs of bodies. A
force acts on a body 43 only when there exists another body B separate from %
which is the source of the action. Moreover, the action of a force in one direction
is not the same as its action in another direction. Thus, force is a vector-valued
entity defined on pairs of separate bodies in %.

The forces of interaction between pairs of material objects are classified as
contact forces and body forces. Contact force arises from the mutual action of
material objects that touch one another. Body force arises from the mutual action
between a pair of separated objects, and for this reason body force is often called
action at a distance. Gravitational, electrical, and magnetic forces are familiar
examples of body forces. However, forces are not always what they seem to be.
Artificial gravity, for example, can be created by the whirling motion of a human
centrifuge used to train astronauts. This apparent gravity is felt by the astronaut as a
contact force when pressed hard into the seat by the centrifuge motion; and every-
one has witnessed the apparent increase and decrease in gravity while riding up and
down, respectively, in a fast moving elevator. A similar feeling of artificial gravity
would be experienced in an elevator in outer space moving “upward” with a con-
stant acceleration. And we all know that astronauts experience “weightlessness”
(actually the absence of contact force in a perpetual free fall within the spacecraft),
because the gravitational force that continues to act on them is very nearly bal-
anced by a certain pseudo-force that arises from the orbital motion of the rapidly
moving spacecraft and its passengers.

Interaction between material objects in %/ may be internal or external to
a subset ./ of % This is diagrammed in Fig. 5.8. A force exerted on part &
(a subset) of a body ./ C % by another disjoint part Z of the same body is
called an internal force. The force exerted on a part % of a body ./ C % due to
another body ./ C %/ that is not contained in ./is called an external force. The
collection of forces that act on a body is assumed additive. We remember that a
part & of a body is itself a body. Hence, the total force exerted on a body 2 in
S is defined as the vector sum of all internal and external forces that act on &%
Since the first two laws apply only to a body /* consisting of a single particle
(seerFigmS:8n)pitsfollowssthatythestotalsforce in these laws is necessarily the to-
tal external force that acts on that particle. Whatever may be the physical nature
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Figure 5.8. The material universe and its interacting parts.

of a force, its physical dimensions are defined on the basis of (5.34); namely,
[F1=[F1=[MVT~'] = [MLT™?]. (See also the preface to the Problems for
this chapter.) The three foundation laws are next discussed in turn.

5.5.2. The First Law of Motion

It is important to observe that Newton’s laws hold only with respect to a
certain preferential frame ®. This special frame is called a Newtonian or inertial
reference frame. The properties of the inertial frame will be studied later. For the
time being, let us accept the idea that there exists in the universe an inertial frame
that may serve as the preferred frame of Newton’s laws, and continue.

The first law of motion postulates the existence of at least one preferred
frame @ and specifies that any disturbance of a particle P which is at rest or in
uniform motion relative to this frame can occur only in response to force, while an
arbitrary uniform motion or stationary state of P in ® requires no force at all. So,
explicitly, if F(P, t) denotes the total force acting on a particle P in any material
universe whatever, the motion x(P, t) of P relative to ® is determined by a certain
functional relation (i.e., an equation in which the variable itself is a function or a
set of functions) x(P, t) = x (F(P, t)), more commonly expressed in the standard
form

F(P, 1) = F(x(P, 1)). (5.35)

Moreover, whatever its form, this general functional equation must satisfy the
specified necessary and sufficient condition for a uniform motion in ®, namely,

x(P, t) = x¢(P) + vo(P)t < F(P,t) = 0forall ¢, (5.36)

wherein x( and v, are constant vectors. A rest state corresponds to the trivial case
Vor=0-Accordinglys;the first law,states,that the unique solution of the equation
F(P, 1) = Z(x(P, t)) = 0 valid for all £ in P is the uniform motion in (5.36). Or,
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conversely, if the motion is uniform in ®, then F(P, t) = & (xq + vot) = 0 for
all z.

Alternatively, since a motion is uniform in & when and only when the
acceleration in @ is zero for all times ¢, (5.36) may be written as

F(P,t)=0forallt & a(P,t) = 0 forall ¢. 5.37)

Because there is no inherent difference between a uniform motion and a state of
rest, by definition, a stationary or uniform state of motion in the preferred frame
® is called an equilibrium state in ®. Thus, in accordance with (5.36) and (5.37),
the first law specifies that in every material universe, a condition necessary and
sufficient for equilibrium of a particle P in an inertial reference frame is that the
total force acting on P shall vanish for all times:

Equilibrium < F(P,t) =0 < a(P,t) = 0. (5.38)

Thus, Newton’s first law postulates the general rule of determinism (5.35) and
it specifies, by (5.36) or (5.38), a universal principle of equilibrium for a particle.
It provides the foundation for the important special branch of dynamics called
statics—the study of forces on bodies at rest in ®.

The principle of equilibrium is the same in every material universe—it is a
universal rule. However, when the motion is not uniform, the form of the functional
equation (5.35) will depend upon the nature of the material universe it describes.
In this respect, the first law is intentionally vague. The second law, on the other
hand, is specific about the form of (5.35).

5.5.3. The Second Law of Motion

The second law of motion identifies a special material universe, called the
world, for which the definite relation (5.34) between force and motion is introduced
to describe the mechanical nature of things in the world. Of course, the abstract
world of the second law is our analytical model of the real material universe, the
real world where we live. However, the rule (5.34) must respect the conditions set
in (5.36) or (5.37). Clearly, F(P, t) = 0 for all ¢ holds in (5.34) when and only
when the momentum p(P, t) = m(P)v(P, t) = po(P) is a constant vector. Hence,
the motion is uniform if and only if the mass m(P) is constant (which it is).

On the other hand, imagine a different material universe in which (5.34) holds
but now the mass varies with the particle speed. The second law would still support
the conditions of the first law in this other material universe. In classical mechanics,
however, the mass of a given body is an invariant, fixed property of the body—it
is independent of the position, velocity, temperature, or any other influence acting
on the body, so long as no part of the body disappears; that is, the mass of the body,
or any part of the body, does not change in time. The principle of conservation of
mass(5:1)rinvokessthisiconditionsforievery motion of a particle. In consequence,
from the rule (5.34), we obtain the basic formula popularly known as Newton’s
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equation of motion:
F(P,t) =m(P)a(P, 1), (5.39)

in which a(P, ¢t) is the acceleration of P in the inertial frame.

The condition (5.37) imposed by the first law for every material universe
strongly suggests that the simplest law of motion for the world is one for which F
a, so that F = 0 implies a uniform motion in the inertial frame &, and conversely.
This means we should have F = ka, where k is some constant characteristic of the
particle. And what more appropriate constant might we select than the invariant
mass of the object? Indeed, this is just the way it turned out in (5.39).

Thus, according to the first law, there may exist infinitely many material
universes, or worlds, all having the same law of equilibrium but each characterized
by a special equation of motion of its own, conceivably quite different from (5.34).
The second law, however, provides a simple mathematical model to study the
nature of most, though not all, physical phenomena in our world. Let us briefly
look at its extension to a system of particles and to a continuum.

5.5.3.1. The Second Law for a System of Particles

The total force acting on a system of particles is defined as the sum of the
forces that act on all of its particles. Let F;, = F(Py, t) denote the total force acting
on the particle P, of a system 8 = {P,} of n particles. Then, with (5.34) and (5.4),
we derive Newton’s second law for a system of particles: The total force acting
on a system of particles is equal to the time rate of change of the momentum of the
system in the inertial frame, i.e.,

n n d d ,
FB.0=Y F =) % - p;ﬁt 23 (5.40)
k=1 k=1

With the aid of (5.7) and the fact that mass is conserved, (5.40) may be cast
in the same form as the basic equation of motion (5.39) for a single particle:

dp*(B.1)
dt

Fg,1) = =m(B)a*(B, 1), (541

where a*(8, t) = v*(B, t) is the acceleration of the center of mass of the system.
In words, the total force acting on a system of particles is equal to the time rate
of change of the momentum of its center of mass in the inertial frame ®, and
hence is equal to the product of the mass of the system and the acceleration of its
center of mass in ®. The second law (5.41) for a system of particles thus aids the
determination of the motion of the fictitious center of mass particle and external
forces that control or constrain the motion of the system. In addition to (5.41), for
a system of particles the auxiliary relations (5.5) through (5.8) are often needed in
applications;as.are the separate equations.of motion of the particles. The equations
of motion for a system of particles are discussed further in Chapter 8. Some further
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remarks on the equilibrium and interaction between the particles of the system
follow shortly.

5.5.3.2. Introduction to Euler’s Laws for a Continuum

We may visualize that as the number of particles of a system grows
indefinitely, the system becomes a continuum 98 with momentum (5.11). In this
case, the rule (5.34) is replaced by a more general principle known as Euler’s first
law of motion: The total (external) force F(9B, t) acting on a body is equal to the
time rate of change of its momentum in the preferred frame, i.e.,

ap(#,1) d
dt  di

It is an amazing fact that this relation also may be written in the form of
Newton’s basic equation (5.39). We recall (5.16) and note that because the mass
is conserved, Euler’s first law (5.42) becomes

*(g
F(%B, 1) = %@ = m(B)a* (A5, 1). (5.43)
Therefore, the total force acting on a body is equal to the time rate of change of
the momentum of its center of mass, and hence is equal to product of the mass of
the body and the acceleration a*(93, t) of its center of mass in the inertial frame.
Euler’s first law for a body thus relates the applied force to the motion of the center
of mass.

Euler’s second law has no counterpart among Newton’s laws of motion.
Euler’s second principle relates the rotational part of the body’s motion to the
applied torque—the total moment of the applied forces about a fixed point in the
inertial frame; and it also involves the moment of momentum (5.33) for a body.
Thus, to study the general motion of a rigid body, besides (5.43), we shall need
Euler’s second law of motion: With respect to a fixed point O in the inertial
frame @, the total torque Mo(9B, t) that acts on a body is equal to the time rate
of change in ® of the total moment of momentum of the body about O:

F(%B,t) = / v(P, t)dm(P). (5.42)
B

Mo(AB, 1) = ho(B, 1) = dit/ Xo(P,t) X v(P, t)dm(P). (5.44)
A

Euler’s basic laws (5.42) and (5.44) are postulated for all bodies, including
deformable solid and fluid bodies. Their application in this book, however, is
restricted to rigid bodies. In this case, the velocity v(P, t) of an arbitrary body
particle P may be expressed in terms of the angular velocity vector. This fact
suggests that (5.44) relates the body’s angular velocity and angular acceleration to
the total applied torque about a fixed point in the inertial frame. We thus envision
that;Euler’s;second-lawsis;usefulsinsdetermination of the rotational motion of the
rigid body.
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It follows from (5.43) and (5.44) that equilibrium of a rigid body requires two
conditions necessary and sufficient in order that every particle of the body initially
at rest or in uniform motion in the inertial frame shall continue in that state. With
the initial conditions in mind, equilibrium requires that both the total force and the
total torque acting on the rigid body about a fixed point must vanish for all time,
i.e. the system of forces must be equipollent to zero:

Equilibrium < F(%,t) =0 and Mo(%,t)=0forallt. (545)

This rule and Euler’s laws are discussed further in Chapter 10.

The principle (5.43) that the mass center moves like a particle having mass
equal to the mass of the body and acted upon by a force equal to the total force
acting on the body means that the motion of the center of mass of a body often
may be found by the methods of particle dynamics. Therefore, in our future study
of the dynamics of a particle, it should be clear that it is correct to model a body of
finite size by its center of mass particle. In general, however, because the equations
of motion (5.43) and (5.44) for a body may be coupled, we cannot suppose that a
problem of rigid body motion may be split into simple separate parts—a problem
of particle dynamics and one of rotation of the body about an axis. In problems
where rotational effects are absent, however, Euler’s first law for a rigid body, or
equivalently, Newton’s second law for a particle, may be used to determine the
motion of the center of mass particle and related unknown forces that drive or
constrain that motion. The effects due to torques that may act on the body are
studied later. Further discussion of (5.40) through (5.44) is reserved for their own
place later; but, as we continue, we shall need to consider continua and systems
of particles in discussion of their mutual interactions.

5.5.4. The Law of Mutual Action

Newton’s third law admits that particles may exert mutual forces on one
another to induce motion in accordance with the previous laws; however, whatever
the nature of the force, the reaction of one particle in response to the action of
another must be of equal, but oppositely directed intensity. Of course, this does
not mean that these two forces will cancel from the equations of motion (5.39)
for the particles, for the forces of action and reaction do not act on the same
particle.

On the other hand, when the two particles are treated as a system, the mu-
tual forces have no influence in the equation of motion (5.40) for the system.
To see this, let us consider a system 8 = {Py, P»} in which the particles P; and
P, exert mutual force on one another. Let F1, = F(P;, t) be the force exerted on
particle Pj by particle P,, and Fp; = F(P,, t) the force exerted on particle P, by
particle P;. Then the third law requires that Fj; = —F,;. These mutual forces
are.internal forces;-and.-hence.the total.internal force is F(P;, t) + F(P,, 1) = 0.
Therefore, such mutual pairs of internal forces do not contribute to the total force
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F(B, t) in the equation of motion (5.40), or (5.41), for the system. On the other
hand, if only one particle P;, say, is considered, then the mutual force F;, acts
on this new “system”, and it does not vanish in the equation of motion (5.39)
for Py.

This example shows the importance of carefully distinguishing the system
being considered. The system chosen for study in a particular situation is called a
free body. A drawing that shows all of the forces acting on the free body is called
a free body diagram, a device introduced to facilitate the solution of a problem. To
construct a free body diagram for any system, we need only recall that there are
two classes of forces: contact forces and body forces. Therefore, we may begin by
asking the question—What bodies are touching our free body? We then show in the
free body sketch the appropriately directed contact forces exerted on the free body
by each contacting body. Next, we ask—What bodies exert forces at a distance
that are acting on our free body? And we show these appropriately directed body
forces in the free body diagram. This simple but important initial procedure in the
analysis of problems is illustrated many times in the sequel. It is essential that the
student learn how to do this.

It is also important to mention that although the total internal force acting on
a system of two particles is always zero, this does not imply that the system is in
equilibrium. The particles could be moving with proportional acceleration vectors
directed along the same line, or perhaps moving on distinct parallel lines. Also,
particles of a system need not have the same uniform motion to be in equilibrium.
On the other hand, for a system of two particles that separately are in equilibrium,
the equal and oppositely directed mutual forces must be balanced by external
forces so that the total force acting on each particle treated as a separate system
is zero. Hence, the vanishing of the total force that acts on a system of particles
is a necessary but not a sufficient condition for equilibrium. Moreover, if it is not
required or otherwise established that mutual forces act along the line joining the
particles, the force Fj, exerted on P; by P, will have a definite turning effect
on P; in moving it around P, as center. Newton’s law of universal gravitational
attraction assumes this collinearity, whereas, as shown later, the collinearity of
mutual forces actually may be proved on the basis of a general rule governing
the nature of mutual internal force that depends only on the locations of the two
particles.

To advance further, however, we shall need to identify various kinds of forces.
We begin by introducing the mutual gravitational force between two material
objects.

5.6. Newton’s Law of Gravitation

Onekindofbodyforcebetweentwobodies is the mutual force of gravitational
attraction, a basic force of nature that everyone knows as graviry. The theory of
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Figure 5.9. Schema for the mutual gravitational attraction of two particles.

gravitation invented by Newton to explain the motions of celestial bodies is studied
here. The idea of a gravitational field created by the existence of matter is introduced
to describe the gravitational field strength due to a particle, to a system of particles,
and to a continuum; and the gravitational force exerted by these bodies on another
particle, or body, is derived. We shall see that with regard to their gravitational
attraction, bodies behave very much like particles, but not entirely. Our objective
is to show that in all cases the gravitational force acting on a material object is
equal to the product of its mass and the gravitational field strength it experiences.
Afterwards, Newton’s theory of gravitation is illustrated in a few examples. The
gravitational attraction by an ideal planet is determined, and subsequently the
definition of the weight of a body is introduced.

We begin with a pair of particles P;, P, having mass m, m,, respectively,
and denote by F, the force exerted on P; by P,, as shown in Fig. 5.9. Let e be
a unit vector directed from P,, the source of the action, toward P;; and write r =
|X7 — X | for the distance between P; and P,, wherein X; and X, are the respective
distinct position vectors of P; and P; in any reference frame ® = {F;1;} . Clearly,
only the relative position vector r = re of P; from P; is important, so a reference
frame is needed only for the solution of particular problems. These terms are used
to state the following law of nature.

Newton’s law of gravitation: Between any two particles in the world, there
exists a mutual gravitational force that is directly proportional to the product of
their masses, inversely proportional to the square of their distance of separation,
and directed in the sense of mutual attraction along their common line, i.e.,

mymy mymy

e=—-G
" 3

Fpp = -G r. (5.46)
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The positive constant G in (5.46) is named the gravitational constant, it
is universal for all particles. Its physical dimensions consistent with (5.46) are
[G]=[FL*/M?]| = [L*/(MT?)]; its value will be given later. Of course, the
roles of P; and P, are mutual and may be reversed. Hence, it is a consequence of
the law itself that the mutual gravitational force exerted by P; on P, automatically
respects the principle of mutual action, that is, F,; = —F».

Newton’s law describes the gravitational interaction between any two particles
in the world; and it has the same form in every reference frame—it depends only on
the relative positions of the particles and their invariant masses. It is conceivable,
however, that there may exist other material worlds where the law of gravity is
different, or where Newton’s law may hold only approximately. In fact, in the
real world it has been known for a long time that the observed orbit of the planet
Mercury differs very slightly from the path determined from calculations based
on Newton’s law. Indeed, the combined gravitational influence of all the known
planets has failed to account for the observed shift in Mercury’s perihelion.

In 1915, however, Einstein proposed a theory of relativity by which he showed
that for bodies that move with speeds that are small compared with the speed of
light Newton’s theory of gravitation is a first approximation to a more general
theory of gravitational fields. Unlike Newton’s theory, which introduces the idea
of mysterious forces at a distance, Einstein’s theory is based on a special geometry
of space and time—a theory whose formulation far exceeds the scope of our studies
here.

Of course, practically all deviations from Newton’s law that are predicted by
Einstein’s theory are so small that even with precision instruments they are difficult
to measure. The precessional motion of the elliptical orbit of Mercury is a model
case for which measurements of the rotation of its major axis, about 43 arc-seconds
each century, agree precisely with Einstein’s prediction. The deflection of light by
the gravitational field of a star, the influence of gravitational field strength on the
frequency of emitted light, and an explanation of the expanding motion of galactic
systems are other effects predicted by Einstein’s theory of relativity and confirmed
by observations. These delicate, fascinating phenomena cannot be explained by
Newton’s theory. There are, however, countless other phenomena in the world that
are perfectly and more easily modeled by Newton’s simpler theory of gravitation
described by (5.46). The discovery of Neptune based on an incredibly tedious year
long calculation in 1846 by Urbain Jean Joseph Le Verrier, for example, was an
exceptional accomplishment of Newton’s theory.

Irregularity in the orbit of the planet Uranus was also known for a long time. !
Calculations by the astronomer Le Verrier of the path of a hypothetical planet,
whose gravitational attraction in accordance with Newton’s theory would produce
the observed discrepancy in Uranus’s orbit, predicted the position of a new body
in the sky. And when eventually a telescope was focussed on this place, the new

T Historical ‘details of ‘the discovery of Neptune and the search for the putative planet Vulcan are
provided in articles by J. D. Fernie cited in the References.
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planet Neptune was discovered very close to its predicted position. The same
trick was used by Le Verrier to try to account for the discrepancies in Mercury’s
orbit. But his hypothetical planet named Vulcan has never been found. Rather,
it was Einstein’s theory of gravitation in 1915 that eventually accounted for the
orbital discrepancies of Mercury, and it predicted similar effects for other planets,
including the Earth. These are impressive theoretical results. Nevertheless, it is fair
to say that in general Newton’s simpler law of gravitation provides an exceptionally
good mathematical model for studying the nature of many, though certainly not
all, gravitational phenomena in the world; and we may use it with confidence in
its predictive value. The idea of a gravitational field based on Newton’s theory is
introduced next.

5.6.1. The Gravitational Field of a Particle

A gravitational field & is said to exist in all of space due to the mass m,
whenever a force of attraction is felt by another “test” particle placed anywhere
in ¢ Hence, m, is named the origin, or source, of the gravitational field. The
attractive force due to m,, per unit mass of the test particle, is called the strength
of the field & Let g(X) denote the field strength at X. Then, in accordance with
(5.46),

Gm,
gX)=——73"e, (5.47)

where e is the unit vector directed from the source m, to the field point X whose
distance from m,, is r, as shown in Fig. 5.10. Since g is the gravitational force that
a particle of unit mass will experience when placed at X in &, the gravitational
force F(P; X) exerted on a particle P of mass m at X is given by

F(P;X) =m(P)g(X). (5.48)

_ Figure 5.10. Gravitational field strength g(X) due to the mass point m,,.
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Alternatively, with (5.47), F(P;X) = —Gm,me/r?, which is the same as (5.46).
Observe again that the gravitational force is independent of the reference frame
that may be used to identify the place X.

5.6.2. The Gravitational Field of a System of Particles

The law of gravitation (5.46), hence also its alternate form (5.48), applies
only to two particles. To find the gravitational force exerted on a particle P by a
system of particles 8 = {P,}, we use the fact that the field strength is a vector
measure of force per unit mass. Since forces are vectorially additive, the separate
field strengths of all particles of 8 must be vectorially additive. We suppose that
the internal forces between the particles of 8 remain equal and opposite and in no
way alter the individual field strengths g;(X) due to the separate particles Py of
B. Then, with the aid of (5.48), the resultant gravitational force exerted on P by
the totality of particles that comprise f is given by F(P;X) =Y ;_ Fy(P;X) =
ZZ=1 m(P)gy(X), wherein F;(P;X) is the gravitational force exerted by P, on
the particle P at X. Thus, use of (5.47) for each source mass my in 8 yields the
resultant field strength g(X) for a system of n particles:

n

- G
g =) aX) =) ~Fe. (5.49)
k=1

k=1 k

The interpretation of r; and e, is evident from Fig 5.11 in which the resultant field
strength at X for a two particle system is illustrated. Hence, use of (5.49) yields
the resultant gravitational force on a particle P due to a system of particles:
F(P;X) = m(P)g(X), which has the same form as (5.48). Of course, the particle
P exerts an equal but oppositely directed gravitational force on . (See Problem
5.14.)

The direction of F(P;X) will depend on the direction of g(X), which is
determined by the system B. In general, the resultant gravitational field strength
(5.49), and hence the resultant gravitational force, does not pass through the center

9(X)=g| (X) +g, (X)

Figure S.11. Resultant field strength g = g; + g of a system of particles 8 = { Py, P»}.
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of mass of the field source §. Indeed, the field strength g*(X) due to the center
of mass particle at the place r* = —r*e* from X and having mass m* = m(g) is
given by (5.47). Writing r, = —rie; (no sum) for the position vector of P from
X, as suggested in Fig. 5.11, and recalling (5.5) for the center of mass, we see by
(5.47) and (5.49) that

G |, =\ Gm “ Gm
gX)=—m't =) =ty —n=gX).
r =1 T =1 Tk

In general, therefore, g(X) is not parallel to r*, and hence the resultant gravitational
force does not pass through the center of mass of 8. Consequently, the gravitational
force on P has a moment about the center of mass of the system. On the other hand,
it may be seen that g(X) = g*(X), very nearly, when the particle P is sufficiently
far from the neighborhood of 8 so that the distance 7, of each particle P, from X
is equal, very nearly, to the distance r* of the center of mass of 8 from X. Precise
demonstration of this statement based on the last relation above is left for the reader.

We have found that the formula for the resultant gravitational force on a
particle due to a system of particles has the same form as the basic rule (5.48) for
the gravitational force due to one particle. Derivation of a similar result for the
gravitational interaction of two separate systems is left for the reader. The procedure
and consequences are similar to those described below for two continuous bodies.

5.6.3. The Gravitational Field of a Body

The gravitational force due to a continuum acting on a particle may be found
in a parallel manner. In this case, we generalize the particle theory by considering
a gravitational field whose strength due to a parcel of mass dm, of the body %,
is defined by —(Gdm,/ r?)e, where e is the unit vector directed from the source
dm, to the field point X shown in Fig. 5.12 at a distance r from dm,. Then the
resultant field strength at X due to the body 9B, is defined by

g(X) = —G f% rzfx)dmo. (5.50)

Both e and r will vary in the integration over the source body %, so they cannot be
taken outside the integral. The resultant gravitational force exerted by the body 9B,
on a particle P of mass m at X is determined by F(P; X) = m(P)g(X), which has
the same representation as the basic rule (5.48) for the attraction between two
particles. Of course, the particle exerts an equal and oppositely directed gravita-
tional force on the body.

The direction of the resultant force F(P; X) is the same as that of g(X), which
is determined by the body 93,. It may be seen that the resultant gravitational field
strength (5.50), and hence the resultant gravitational force usually does not pass
through.the.center-of imass.of By The proof is parallel to that for a system of
particles. Hence, in general, the resultant gravitational force exerted on P by the
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K

Figure 5.12. Elemental gravitational field strength dg(X) due to a parcel of mass dm, of a body %,.

body is not the same as the gravitational force exerted on P by its center of mass
particle. In consequence, the gravitational force on P exerts a torque about the
center of mass of the body. Of course, when the particle P at X is sufficiently far
from the neighborhood of 2B, so that the distance of each of its particles from X
is equal very nearly to the distance r* of the center of mass of 43, from X, the two
field strengths are very nearly equal.

Finally, let us suppose that P is a material parcel dm(P) of another body
2B with mass m(Z3). Then use of the field strength (5.50) in integration over %
determines the resultant gravitational force ¥(9B) exerted on B by B,, namely,

F(B) = / g(X)dm(P) = m(B) & (B). (.51
A

The quantity é (9B) defined by (5.51) is named the average, or mean field strength
due to 4B,. (See Problems 5.23 and 5.24.)

The gravitational force exerted by %8 on 43, is necessarily equal and oppositely
directed to F(); but the forces need not be collinear, nor pierce the center of mass
of either body. Thus, with respect to an arbitrary reference point, in general the
source body %3, will exert a gravitational torque on the body 2. If xo(P) is the
position vector from a reference point Q to an element of mass dm(P) of 98, the
moment about Q of the gravitational force distribution exerted on 43 by the field
source 98,, in accordance with (5.22), is

My(9B) = f/j Xo(P) x g(X)dm(P). (5.52)

Thisistillustrated ina'subsequent Exercise 5.5, page 42, that includes discussion
of the equipollent force and couple for the gravitational force system (5.51) and



38 Chapter 5

(5.52). Of course, the gravitational torque may vanish and the mutual gravitational
forces may pierce the centers of mass in special cases. This happens, for example,
when 43 is sufficiently far from the source body %,.

Observations of the kind described above will be helpful in understanding
the approximations assumed in our future studies of particle dynamics in which
bodies of finite size occur in many of the problems. We have seen that with regard
to the equation of motion, a body may be replaced by its corresponding center
of mass object; and as regards the gravitational force acting on a body, there is
presently only one rule that need concern us here. In sum, regardless of the nature
of the field source, the gravitational force ¥(0) acting on a material object O is
equal to the product of its mass m(O) and the total gravitational field strength
g(0) experienced by @; that is, in contracted notation,

F(O) = m(O)g(0). (5.53)

5.7. Some Applications of Newton’s Theory of Gravitation

The application of Newton’s theory of gravitation is illustrated next in two
examples. The gravitational interaction between a wire ring and a particle, and
between a wire ring and a thin rod are studied. It is confirmed that when a material
object is sufficiently far from the field source, the gravitational interaction reduces
to the fundamental law (5.46) for two particles. The gravitational torque exerted
on a rod by a semicircular wire is then described in an exercise. We begin with the
gravitational interaction between a solid body and a particle.

Example 5.6. Interaction between a wire ring and a particle. A homoge-
neous, thin circular wire 98, of radius R and mass m, is shown in Fig. 5.13.

°

Figure 5.13. Geometry for the gravitational interaction between a wire ring and a particle.
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Determine the gravitational field strength of the wire ring at a point P on the nor-
mal axis through its center O. Show that the resultant gravitational force exerted
by 9B, on a particle of mass m placed at P reduces to the gravitational force (5.46)
between two particles when P is far enough from O such that |X| > R.

Solution. The resultant field strength of the circular wire 9B, at the
place X=Zk is determined by (5.50) in which the relative position vec-
tor r(X) of the point P from the parcel of mass dm, of %, is given by
r(X)=re = X — R=ZKk — Re, in terms of the cylindrical reference variables
shown in Fig. 5.13. With r? = Z2 + R?, the integrand in (5.50) may be written as

e ZKk—Re,
5 =—7 (5.54a)
r ( 72+ Rz) 2
Introducing ¢ = m, /27 R, the mass per unit length of the homogeneous wire,
and ds = Rd¢, its elemental length, we have dm, = ods = %modqﬁ. Then, with

(5.54a) in (5.50), noting that both Z and R are fixed quantities, and setting the
limits of integration over 93,, we obtain the resultant field strength of the circular

wire at X:

Gm 2w 2

gX)y=———>— (Zkf d¢ — Rf e,dqb), (5.54b)
27(Z? + R?)? 0 0

in which e, = cos ¢i + sin ¢j. The last term vanishes; and the gravitational field
strength at the place X due to the circular wire is thus given by

Gm,Z
(22 + R?)?

The field strength at the place P is directed toward the center of the ring.
A particle of mass m placed at X in the field (5.54c) experiences an attractive
gravitational force given by (5.48) in accordance with the rule (5.53), namely,

Gmm,Z
(22 + R?)?

directed through the center of mass of %,,. Notice that if P is placed at the center
O where Z = 0, the resultant, mutual gravitational force on P is zero.

Finally, suppose that P is far enough from O so that R/Z « 1, hence
negligible. Then r = Z, k = e, approximately, and (5.54d) may be written as
F(P;X) = —Gmm,e/ r2, which has the same form as Newton’s law (5.46) for the
gravitational force between two particles of mass m and m,, respectively placed
at P and O.

gX)=— (5.54¢)

F(P;X)=m(P)gX) = — k, (5.54d)

Wenextstudy-anapplicationof (5:51) for the gravitational attraction between
two solid bodies.



40 Chapter 5
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Figure 5.14. Gravitational interaction between a wire ring and a thin rod.

Example 5.7. Interaction between a wire ring and a thin rod. A homoge-
neous, thin rod 48 of length £ and mass m (%) is placed along the normal axis
of the wire ring described in the last example. What is the resultant gravitational
force exerted by the rod on the ring? Find the mean field strength due to the ring.

Solution. Since the gravitational field strength of the wire ring is known
by (5.54c¢), it is convenient to first find the resultant force that the ring exerts on
the rod, and afterwards obtain the opposite force acting on the ring. The rod is
placed along the central axis with its ends A and B at the respective distances a
and b from the center O, as shown in the Fig. 5.14. For the homogeneous, thin
rod, the parcel of mass at X = Zk from O is dm(P) = m(9B)dZ /£. Hence, the
substitution into (5.51) of the gravitational field strength vector (5.54c) acting on
dm(P) determines the resultant gravitational force on the rod. Introducing the
integration limits for the rod 98 and noting that 2Zd Z = d(Z* + R?), we obtain

G By (bd(Z*+R?
F(®B) = — Moy / ( 3) . (5.55)
2¢ a (Z2+ R2)2
This yields the resultant gravitational force on the rod 98 due to the wire ring %3,
Gmm(B _1 _1
F(%B) = ——m—;fgk ((R2 +a*) " = (R* + 1Y) 5) : (5.55b)

Theyresultantygravitationaluforcemexerted on the ring is now given by
F(%,) = —F(£). This force pierces the mass centers of both homogeneous solids.
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When the center of the rod is at O, b = a = £/2 and the mutual resultant gravita-
tional force vanishes. When the rod is sufficiently far from the ring so that R /a and
£/a are both < 1, (5.55b) for the gravitational attraction between the two bodies
reduces to (5.46) for two particles.

To determine the mean field strength due to the ring, first observe that

a, = VR + a2, b, =+ R? + b2, (5.55¢)

are the respective distances from any point Q on the ring to the end points A and
B of the rod. Then, with (5.55b), the mean gravitational field strength due to the
ring, in accordance with (5.51), is

F(#B)  Gm, (bo ; ao) K

8 (%) = m(B) B ayb,

(5.55d)

O

The reader will find it informative to work through the following exercises.
These review the previous examples in the solution of a similar problem for a
semicircular wire. In addition, the gravitational torque effect is illustrated.

Exercise 5.3. Interaction between a semicircular wire and a thin rod. Sup-
pose that the ring in the previous example is replaced by a semicircular wire of
radius R in the upper half plane so that ¢ € [-7, 3] (see Fig. 5.13), while the
rod retains the configuration shown in Fig. 5.14. Recall the sequence of equations
(5.54a) through (5.54d). Show that the semicircular wire produces on the normal
axis through O at X = Zk a resultant gravitational field strength given by

Gm,
g(X) = Mo Ri-nZK); (5.56a)
T ( Z2 4+ Rz) 2
and hence the resultant gravitational force exerted by the wire on the rod is
G 2
F(B) = — | = (ba, — aby)i— 7 (by — ar)K |, (5.56b)
nla,b, | R
where a, and b, are defined in (5.55¢). O

Exercise 5.4. Gravitational torque exerted by a semicircular wire on a thin
rod.Itis seen in (5.56Db) that the resultant gravitational force on the rod has a vertical
component that has a moment about the center point O, for example. Therefore,
the gravitational force distribution on the rod gives rise to a gravitational torque
(5.52). Let Q be the reference point at O so that xgp = Zk in (5.52). Show that the
gravitational torque about O exerted on the rod by the semicircular wire is

2RGm,m
mla,b,

Mo (%) = (bo — a,) .- (3.56¢)

g
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Exercise 5.5. The force system (5.56b) and (5.56c¢) is equipollent to a grav-
itational force F(9B) at a certain point Q and a gravitational couple C(B) =
Xo x F(93), whereXo = (%, y, Z)isaposition vector from O to any point on the line
of action of F(23). Hence, Q is an arbitrary point on this line; and C(%) = M (%)
provides the equation of the line of action of the equipollent force. Find the equa-
tion of the line of action of the equipollent force for the gravitational force system
exerted by the semicircular wire on the rod. Determine its intercepts (%,, J,, Z,)
with the axes, and thus show that the line of action of the equipollent force act-
ing on the rod pierces the center of mass of the homogeneous semicircular wire,
but not that of the rod. Consequently, the rod exerts on the wire a gravitational
force F(4,) = —F(%) and a gravitational couple C(48,) = —C() at its center
of mass. d

5.8. Gravitational Attraction by an Ideal Planet

Though enormous in size compared to ordinary material things, heavenly
bodies are separated by great distances, so the ratios d/D of their diameters d to
their distances of separation D are small quantities. Consequently, as regards their
gravitational interactions, the heavenly bodies typically are modeled as particles.
Here we examine this hypothesis for an ideal planet and show that its gravitational
field strength is the same as the field strength of a particle of equal mass placed at
its center.

Every material object in the vicinity of the Earth experiences a gravitational
attraction that arises principally from the attractive force exerted by all parts of the
Earth on every part of the object. Of course, the dimensions of ordinary bodies are
infinitesimal in comparison with the size of the Earth, so even when these bodies
may be on or very near the Earth, it seems sensible in a first approximation to
model the body in its relationship to the Earth as a particle or, more precisely, as
a center of mass object of mass m. Since the mass of a planet like the Earth is so
considerably greater than the mass of even the largest structures, like an aircraft, a
ship, or a skyscraper, the mutual gravitational attractions of these bodies obviously
are small in comparison with the total gravitational force due to the Earth. Indeed,
in all of our experience we have suffered no apparent propulsion toward these
objects, nor they toward one another. But when we have the misfortune to tumble
from even the slightest height, it hurts! The effect would be the same if it happened
on the Moon, but with much reduced intensity due to the Moon’s smaller size and
mass. (See Problems 5.25 and 5.26.) In any case, ignoring other bodies, we want
to know—What is the gravitational force on a body due to the Earth?

To model the shape of a typical planet and its mass distribution, let us assume
that (i) the planet is a sphere of radius A, and (ii) its mass density p = p (R) varies
onlyswithsthe distancesRyfromyitsicentersThe total gravitational force exerted by
the sphere on an external material point P at a distance X from its center may
be determined by use of (5.50) in (5.48), and cast in the spherical coordinates
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Spherical Coordinates
Range of the Variables
R < [0.A]

f € [0,7]

¢ € [0,27]

(a) Volume Element

Figure 5.15. Geometry for the gravitational attraction of a particle P due to an ideal spherical planet.

(R, 6, ¢) shown in Fig. 5.15. The material volume element is shown in Fig. 5.15a.
Hence, the spherical element of mass is dm, = p(R)R?sinf dRdAd¢. Also,
—e/r? = (R — X)/r3, wherein the unit source vector e is directed from the parcel
dm, at R = R sin 6(cos ¢i + sin ¢j) + R cos Ok to the particle P at X = Xk, and
r = (R? 4+ X? — 2RX cos 8)3. Collecting these terms into (5.50) and setting the
limits of integration over the sphere 93,, we find the gravitational force (5.48)
exerted by the ideal planet on a particle P of mass m at X is given by

F(P;X) _fA/”/z” (Rsin@(cos¢i+sin¢j)+(Rcos€—X)k)
mG o Jo Jo (R2 4+ X2 — 2RX cos 0)?

x p(R)R? sin0d RdOd .

The integrations are not so formidable as may appear. In fact, integration with
respect to ¢ yields f02 " (cos ¢i + sin @j)d¢ = 0 and fozn d¢ = 2x. Therefore, it
follows, as one might expect from symmetry, that the resultant gravitational force
exerted by an ideal planet on a particle of mass m is directed toward the center of
the sphere:

cos 0)p(R)R? sinOd Rd6

. (5.57)
+ X? — 2RX cos 6)?
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The reader may show directly that (5.57) may be obtained by use of symmetry
about the k-axis and by considering the attraction of a thin ring of radius R sin8
and thickness d R at a central angle 26. So far the result (5.57) actually holds more
generally for p = p(R, 6). To continue, however, we need p = p(R).

Returning to (5.57) and integrating the functions in 8, being careful to observe
that the particle at X lies outside the sphere, i.e. X > R, we eventually find the
important result

m(P)m(A,)
X2
wherein m(48,) is the mass of the sphere and g(X) is its field strength at X:

F(P;X)= -G k=m(P)g(X) for X > R, (5.58)

A
m(By) = f dm, = / 47p(R)RdR, g(X)=—Gm)f3°)k. (5.59)
7 0

0

The gravitational force (5.58) has precisely the same form as (5.46) for the
gravitational attraction between two particles; and the gravitational field strength
in (5.59) is the same as the field strength (5.47) of a particle of equal mass m(4,)
placed at the center of the sphere. Therefore, as regards its gravitational attraction,
a sphere of mass density p(R) behaves like a particle having mass m, = m(9,),
the mass of the sphere, and located at its center. Thus, any planet that is essentially
spherical and has an average density variation that depends only on the distance
from its center will attract a particle of mass m with the central directed force (5.58)
characteristic of a source particle located at its center. Plainly, our hypothetical
planet does not represent accurately the true features of the Earth, nor any other
real planet. This analysis provides only a simple first approximation of the field
strength due to the Earth, or any similar body.

5.9. Gravitational Force on an Object Near an Ideal Planet

Let us consider the field strength in the vicinity of our ideal planet. The radius
vector from its center to an object P in the neighborhood of its surface may be
written as X = (A + ¢)k, where &, the normal distance of P from the surface, is
very small compared with the planet’s radius A. Then (5.58) may be written as

Gmm,k

F(P;A+¢)= —m,

(5.60)

where m, = m(93,) denotes the planet’s mass. When ¢ = 0, we obtain the gravi-
tational force on P at the planet’s surface:

Gm,
AZ

F(P:A)=m(P)g(A) with ' g(A) = —gk = ———k. (5.6
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The constant g = Gm,,/ A? is known as the acceleration of gravity; its value plainly
depends upon the size and mass distribution of the planet. Although g, as its name
implies, has the physical dimensions of acceleration, it is not a kinematical quantity;
it is not the derivative of a velocity vector.

To determine the error committed by our neglecting the term £/A in (5.60),
the relation (5.61) and the binomial expansion of (1 4 ¢/ A)~? are used to obtain

2e  3¢?
F(P;A +¢e)=F(P;A)1 7 + yE ).

The first approximation /A = 0 yields (5.61). Therefore, the next term 2¢/A is
a measure of the error committed when this term is ignored. For example, for
an aircraft flying at an altitude of ¢ = 10 mile (16 km) above the Earth, whose
average radius is 3960 mile (6373 km), 2¢/A = 0.005, whereas for a spacecraft
at an altitude of 100 mile (161 km), 2¢/A = 0.05. In the first instance we commit
an error of about 0.5% when using the estimate (5.61), in the second we err by
nearly 5%. Thus, so long as the object P does not stray too far from the planet, to
a close approximation, the gravitational force F = mg is a constant vector given
by (5.61). The extent to which this approximation may be useful depends on the
particular application. In situations where gravitational variations with the altitude
are important, the estimate (5.61) is not to be used. (See Problem 5.22.)

5.10. Weight of a Body and its Center of Gravity

The gravitational force exerted by a body 98; on another body %3, is called
the weight of B, relative to 9B,. The gravitational field strength of a body %, is
given by (5.50), and the gravitational force it exerts on an object ¢ is described
by (5.53). This is the weight of @ relative to %8,. Thus, specifically, the weight
W(P;X) at X of a particle P of mass m(P), relative to 9, is defined by

W(P;X) = m(P)gX). (5.62)

The universal law of gravitation (5.46), hence (5.50), involves invariant quan-
tities that are independent of the reference frame—it is the same for all observers.
Therefore, the weight of an object is the same for all observers; but it varies with the
relative gravitational source. The weight of a particle P near the Earth is estimated
by the constant force (5.61). The weight of the same particle in the neighborhood
of the Moon, say, is also estimated by (5.61), but its value differs from its weight
relative to the Earth. (See Problem 5.25.) In both cases, however, the mass m(P) is
the same—mass is an invariant property of a bodys; its weight is not. Henceforward,
unless stated otherwise, the weight of a body shall mean its weight relative to the
Earthy Thusybys(5:61)randy(5:62)nthesweight W of a body modeled as a particle
of mass m is an attractive body force abbreviated by W = Wn = mgn = mg,
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where n is a unit vector directed toward the center of the Earth. In accordance with
(5.53), the weight of a system of particles and a continuum are regarded similarly.

5.10.1. The Local Acceleration of Gravity—An Estimate

It is known from experimental measurements that the gravitational constant
has the value G = 6.67 x 107! N-m? - kg2 = 3.43 x 1078 Ib - ft? - slug 2. The
estimated average mass density of the Earth is p = 5520 kg/m?, and its average
radius is A = 6373 km, very nearly. Hence, the constant acceleration of gravity in
the vicinity of the Earth estimated by (5.61) is g = 9.824 m/sec® = 32.23 ft/sec’.
These values are reviewed and refined later on. In most engineering applications,
however, it is customary to use the estimate g = 9.8 m/sec? = 32.2 ft/sec?.

Since the gravitational constant G is so very small, even when two bodies
may be very close to one another, the gravitational force between them, though
measurable (as demonstrated in experiments to measure G), is insignificant unless
the mass of at least one of the bodies, like the Earth, is enormous. Therefore, the
mutual attractive forces of neighboring bodies other than the Earth are ignored,
and hence the total attractive gravitational force on an object is its weight. (See
Problem 5.26.)

5.10.2. Center of Gravity of a Body

So far as a particle may be concerned there is no ambiguity as to where the
weight vector acts—it acts on the particle. But when the total weight of a system
of particles or of a body is introduced, the place relative to their material points
at which the total weight of these bodies may be supposed to act is not evident.
The concept of the center of gravity is introduced to clarify this question. We
shall discuss the center of gravity for a body and leave as an exercise the parallel
development for a system of particles.

The weight of a material parcel of mass dm(P) at a point P of a body 23 is
g(P)dm(P), where g(P) is the gravitational field strength at P due to the Earth.
In accordance with the first equation in (5.51), the weight of 93 is defined by

W(%’):/ g(P)dm(P). (5.63)
B

If the gravitational field strength is uniform over 48 so that g(P) = g, a constant
vector, the weight of 98 is simply the product of g and its mass m(98): W(9B) =
m(9B)g.

Since the body over which the gravitational field acts is small compared with
the Earthy the Earth’s fields, though.directed approximately toward its center, may
be modeled as a parallel field over the body region, so that g(P) = g(P)n, where
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Figure 5.16. Schema for the equipollent moment condition in a parallel, variable gravity field.

n is a constant unit vector radially directed toward the Earth. Hence, (5.63) yields

W(%):de(P):/%g(P)dm(P), (5.64)

in which dw(P) = g(P)dm(P) is the elemental weight of the parcel dm(P).

By (5.63), the distribution of the weight of a body in a parallel, but variable
gravitational field is equipollent to the single force W(Z3). In addition, for any
assigned point Q in the Earth frame ® = {F; I} shown in Fig. 5.16, the moment
My, about Q of the weight distribution dw(P) = ndw(P) in the parallel Earth
field is equipollent to the moment about Q of the total weight W(ZB) = nW (%)
acting at a point C along its line of action in ®. The unknown position vector of C
from Q is denoted by X (%) in Fig 5.16. Thus, the equipollent moment condition
(5.29) is

M, = Xp(B) x W(B) = / xo(P) x dw(P), (5.65)
B

wherein Xp(P) is the position vector of a material parcel of weight
dw(P) at P. With dw =dwn and use of (5.64), (5.65) yields W(#B)Xy x
n = [, xo(P)dw(P) x n. For simplicity, let us discard the subscript Q, and note
thatingeneralthe positionvectorsimayvary with time ¢, as suggested in Fig. 5.16.
Then, with these adjustments, since Q may be chosen arbitrarily and n is a fixed
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direction, we may satisfy this equation by choosing the point at X defined by
W(B)X(AB, t) =/ x(P, t)dw(P) (5.66)
B

to provide the location from Q of the point C at which the weight of & acts to
produce a moment about Q equal to that of its distribution. The point of the body
9B defined by X(9B, t) in (5.66) is called the center of gravity of ZB.

The location of the center of gravity will depend on the variable gravitational
field strength g(P) and the orientation of the body, which also might be nonho-
mogeneous. So, if the body is moved to a different configuration at another place
in a variable gravity field, the center of gravity generally is not at the same place
in the body frame; and hence the center of gravity generally is not a unique point
in the body frame.

Example 5.8. A homogeneous cylinder & of height & and its base at the
distance a from the Earth’s center F in frame & = {F; I} is shown in Fig. 5.17.
Show that the center of gravity in a variable gravity field is not an invariant point
in the body reference frame.

g(X|

— K

SR Zyl_i.lsl

Figure 5.17. Schema for evaluation of the center of
pravity of a uniform cylinder in a variable, parallel
oravitational field.
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Solution. The second equation in (5.59) gives the variable gravitational field
strength g(P) = MG/ X? at P due to the Earth. The Earth’s mass is M = m(%,)
and X is the distance from F to a material parcel at P having weight dw(P) =
g(P)dm(P) = (MG/X?*)odX, where 0 = m/ h is the mass per unit length of 2.
Integration in accordance with (5.64) shows that the weight of the cylinder in the
given configuration will vary with the distance a from the Earth:

mMG f”” dX  mMG
a

W) = —— X2 aa+h)

(5.67a)

The location X(28) = XI + Y J + ZK of the center of gravity from F is given
by (5.66). With x(P) = XI+YJ+ ZK in Fig. 5.17, we find by symmetry about
the I-axis that Y = Z = 0 and

MmG /a+h dXx MmG1 <a+h>
“h '

W(B)X = X p

(5.67b)

Using (5.67a) and introducing % = X — a, we obtain the location ¥ of the center
of gravity in the body frame ¢ = {O;i;} in Fig. 5.17:

xza[1+h/“1n<1+’1>—1]. (5.67¢)
h/a a

This result shows that the center of gravity in the body frame varies with a, the
vertical distance of O from the center of the Earth. If the body is moved vertically
to another place, the location x of the center of gravity in the body frame will
change. Hence, in contrast with the invariant center of mass of the same body, the
center of gravity generally is not a unique point in the body reference frame ¢.
The center of gravity is not an invariant property of the body.

On the other hand, the variable gravity effect on the position of the center
of gravity of an ordinary body usually may be considered negligible. Because the
body’s height 4 is small compared to the radial distance a from the center of the
Earth, we may ignore in the last formula all terms of order greater than the first in

h/a <« 1. We recall the series expansion [n(1 +z) =z — EZ + 3z — -+ valid
for0 < z = h/a < 1 and thus obtain the unique, approximate locatlonx = h /2 of
the center of gravity in the body frame ¢. (il

In most practical cases of interest, the gravitational field throughout a body
that is small compared with the Earth may be approximated by a constant field of
strength g throughout that body. Hence, the center of gravity of a body 93, even
in a variable, parallel gravitational field, is the unique point in the body frame ¢
whose position vector X from any assigned point Q in & is given by (5.66), very
nearly. Therefore, so far as its weight is concerned, the body may be replaced by
a particle of weight W(3) located at its center of gravity. Of course, the center
of rgravitysparticlerneed not-berazmaterial point of 43, but it may be. In a fixed
configuration of the body, the definition (5.66) is independent of the choice of the
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reference point Q in @, and hence in a locally, constant gravity field, the center of
gravity is the unique point C in the body frame relative to which

/ p(P, t)dw(P) = 0. (5.68)
B

Here p(P, t) is the position vector from C to the parcel of weight dw(P) at P.
Equation (5.68) states that the moment of the weight distribution of the body about
its center of gravity vanishes. The foregoing construction does not specify that the
body be rigid. For a rigid body, however, p(P, t) is independent of time in a body
frame.

We have learned that in general the center of gravity is not an invariant
property of the body—it varies with the gravitational field strength in the region
of space that the body currently occupies. However, because the field strength due
to the Earth varies insignificantly over ordinary bodies, it is quite reasonable to
replace the variable, parallel gravitational field by a locally uniform, parallel field.
In this case, (5.66) reduces to (5.12) so that X = x*. Thus, in a locally uniform
gravitational field, the center of gravity and the center of mass of a body coincide,
in which case the center of gravity shares all of the properties of the center of
mass.

Finally, we recall that sometimes the weight density y(P) = p(P)g(P), the
weight per unit volume of 23, is used in engineering analysis. In this case, we
have dw(P) = y(P)dV (P). Thus, if the weight density of a body is constant, the
weight of the body is the product of its weight density and its volume V(93) :
W(B) = y V(AB). Hence, from (5.66) and (5.14), the center of gravity of a body
of uniform weight density is at its centroid. For a homogeneous body in a locally
uniform, parallel gravitational field, p, g, and y = pg are constants, and hence
in this important special case the center of gravity, the center of mass, and the
centroid of the body are coincident points. In general, however, they are not.

5.11. Coulomb’s Laws of Friction

So far, our study has focused on one important kind of body force, the familiar
force of gravity. We now consider a familiar kind of contact force, the frictional
force that arises between pairs of separate bodies in their pending or relative sliding
motion. Two physical laws, known as Coulomb’s laws, govern the nature of this
frictional force.

The first law of friction was known for a long time before Charles Coulomb
(1736-1806), a senior captain in the French Royal Corps Engineers, verified it in
1781 during investigation of mechanical improvements for military gear. Histo-
rians, however, discovered long ago a statement of the first law in the notebooks
ofsthefamousyltaliansartistrandyinventorgdeeonardo da Vinci (1452-1519). From
simple experiments, da Vinci concluded that the amount of friction is proportional
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to the normal pressure between the contacting bodies and is independent of their
area of contact. Da Vinci’s empirical proposition thus provided the first record
in scientific writings of a law for sliding friction, an important contribution to
mechanical science that was lost for nearly three centuries!

The notebooks, for several reasons, were virtually unknown prior to 1797.
Translation of the manuscripts, language aside, was hampered by da Vinci’s habit
of writing in a reversed, left-directed fashion that required reading from a mirror,
certainly an uninviting prospect. Though da Vinci apparently planned to assemble
his voluminous notes for publication, this never happened. Upon his death in 1519,
the encoded notebooks were passed to a close friend who guarded and preserved
them until his own death in 1570; and from that time onward the manuscripts
passed many hands, some parts being lost forever. Thirteen volumes survived and
eventually were collected in the Ambrosian Library at Milan. But in the invasion
of Italy in 1796, the documents were seized by Napoleon Bonaparte and carried to
Paris, where for the first time they were studied by J. B. Venturi who later described
them in an essay published in 1797. (See Hart, Chapters I and VII.)

It is no surprise, therefore, that da Vinci’s law of friction was unknown to
the French engineer Guillaume Amontons, who rediscovered it in 1699, nearly
200 years after da Vinci. It is astonishing, however, that the French Academy of
Sciences, which expressed disbelief of the independence of the area of contact, re-
ceived Amontons’s rule with skepticism. Yet later, in 1781, the Academy awarded
Coulomb a prize for essentially the same thing, though presented more thoroughly
and in broader terms. (See Deresiewicz.) Coulomb’s exemplary experiments es-
tablished, not one, but two basic laws of friction that express a clear distinction
between static friction and dynamic friction that went unnoticed by all others.
These principles characterize the nature of the contact force between surfaces at
rest and in relative sliding motion; they are the focus of the discussion that follows.

5.11.1. Contact Force between Bodies

A contact force is the mutual force acting at the interface between separate
bodies that touch one another. At each interface point q, the contact force ~(q),
say, exerted by one body upon the other may be separated into component forces
1n(q) and T(q), respectively, normal and tangent to the interface at q, so that
v(q) = 1(q) + 7(q). The normal component describes the mutual pulling (tension)
or pushing (compression) of one body by the other perpendicular to the interface;
it is called the normal force. If the contacting bodies %, and 9B, are subsets of
the same body % = 9,U%B, separated by an imaginary material surface .7, the
tangential component 7(q) characterizes the mutual resistance to shearing of the
two parts along ./ so that 7(q) is named the shear force. These particular contact
forces play a paramount role in the mechanics of deformable solids and fluids.
Weshall,encounterthemyinga,differentysetting in various problems ahead. If we
wish, for example, to determine how the tension in the string of a pendulum varies
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as the pendulum swings to and fto, it is necessary to introduce an imaginary cut
in the string, and show in its place in a free body diagram of the pendulum bob,
the normal (tensile) force that the string exerts on the bob. On the other hand,
when two bodies 98, and 93, are physically separate, to maintain their contact the
normal component of the contact force must be compressive; and its tangential
component characterizes the mutual resistance to sliding of one body surface
over the other, a natural effect that everybody knows as friction. In this case, the
tangential component is called the frictional force.

The description of the frictional force is far more complicated than suggested
above. The normal and tangential components of the interfacial force are distributed
over the area of contact. But the actual area of contact is unknown. Indeed, even the
most carefully polished surfaces look under magnification like miniature mountain
ranges with hills and valleys that are much larger than molecular dimensions, and
the contacting surfaces press upon these tiny mountains. Therefore, the actual area
of contact may be much smaller than the apparent area of contact described by the
macroscopic dimensions of the interfacial region.

Although interlocking effects of the surface asperities play a role in the over-
all complex mechanism! of sliding friction, it is known from sophisticated mea-
surements that frictional force arises mainly from the force required to shear the
mountain peaks. Moreover, these experiments reveal that the actual area of con-
tact, accounting for the deformation, depends on the intensity of the normal force.
This area, however, is very nearly independent of the apparent interfacial area of
the sliding bodies. The intense pressure at the contact points increases the area
of contact until it is large enough to support the load. But in observation of the
frictional resistance, the growth in the real area of contact manifests itself through
the increase in the applied normal thrust, and hence is independent of the apparent
interfacial area of contact. These measurements confirm da Vinci’s primary ob-
servations and support his law of sliding friction; and they are the foundation for
Coulomb’s laws.

The distribution of the contact force is also unknown. But information about
this force is required before any problem that involves friction can be solved. To
hurdle this obstacle, we adopt the advance strategy that the normal and tangential
distributions of the contact force, whatever the actual area of contact may be, are
equipollent to a resultant normal force N and a resultant frictional force f that acts
to oppose the relative motion of two contacting separate bodies 93; and %,. Thus,
if n(q) and 7(q) denote the normal and tangential force distributions per unit area
a of the apparent contact area A, then N = [ an(@da, f= / 4 T(q@)da; and the
resultant contact force R = f 4 Y(q)da exerted by %; on B, is

R=N+f (5.69)

i SeesthesclassicalitreatisesbysBowdensands Tabors€ontemporary molecular theories of friction and
modern surface measurement techniques are discussed in the referenced article by Krim.
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(b) Free Body Diagram of &,

(a) Contact Forces on &, by &,

Figure 5.18. The contact forces exerted by the body 93, on the body 9,, and the free body diagram of %3,.

Thus, instead of having to deal with the unknown surface load distributions, we
may work with their resultants in (5.69). The resultant contact forces exerted by
a body %, on another body 9B, are shown in Fig. 5.18a. Other contact and body
forces may act on %,, but these are not shown here. Of course, the contact forces
exerted by 9B, on 9B, are opposite to those exerted by %B; on B,.

5.11.2. Governing Principles of Sliding Friction

Perfectly smooth, frictionless surfaces do not exist. Nonetheless, sometimes
the surface asperity is so fine that the surface feels perfectly smooth to our sensa-
tion of touch. Therefore, in situations where frictional effects may be considered
negligible or unimportant, we may sometimes consider an ideal model of smooth
contacting surfaces that offer no sliding resistance whatever, a model that brings to
mind the seemingly effortless, graceful motion of a skater on virtually frictionless
ice. In this ideal case, the frictional force is zero and the contact force is normal to
the interfacial tangent plane, that is, f = 0 and R = N in (5.69). This ideal property
characterizes a so-called smooth surface.

When the surfaces are not perfectly smooth, it is intuitively clear that if
the angle o of the inclination of the plane surface of the body 98; shown in
Fig. 5.18a is sufficiently small, the body 98, will remain at rest on the plane.
But as « is gradually increased, the magnitude of the frictional force must also
increase gradually to restrain %3,. Eventually, the angle of repose a will exceed
a certain critical, maximum value «, at which the frictional force can no longer
sustainthe equilibriunrof 9855 and %5 will begin to slide down the plane. Thus, the
magnitude f = |f| of the static frictional force between the bodies eventually will
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reach a critical value f = f,, called the critical force, at which slip is imminent.
Of course, after sliding begins, friction continues to act between the contacting
surfaces to oppose the relative motion. Clearly, this dynamic frictional force fy
cannot exceed the static, critical force; in fact, experiments show that f; < f..
These critical values of the frictional forces depend on the intensity of the normal
contact force between the bodies. Indeed, we see readily that when lightly pressed
together, our hands can be slid easily one upon the other; but when pressed tightly
together, their relative sliding is rendered more difficult. The values of the critical,
static and dynamic frictional forces are most simply related to the magnitude of the
normal contact force between the bodies in accordance with the following basic
and ideal principles of friction commonly known as Coulomb’s laws of friction.

1. The law of static friction: The critical magnitude f. of the static frictional
force between dry or lightly wetted surfaces that are at the verge of slipping
relative to each other is proportional to the intensity N of the mutual,
resultant normal force between them:

fe=uN. (5.70)

The constant u, called the coefficient of static friction, is independent of
the interfacial contact area, it depends only on the nature of the contacting
surfaces.

2. The law of dynamic friction: The magnitude f; of the frictional force
between two dry or lightly wetted surfaces sliding relative to one another
is proportional to the intensity N of the mutual, resultant normal force
between them:

f4=vVN. (5.71)

The constant v, named the coefficient of dynamic friction, is less than the
static coefficient for the same conditions, v < . Moreover, v is indepen-
dent of the interfacial area of contact and of the relative sliding speed of
the surfaces; it depends only on the nature of the contacting surfaces.

The first law determines the greatest frictional force that can develop between
contacting surfaces before sliding occurs, whereas the second law determines the
magnitude of the frictional force that acts during the relative sliding motion. If a
sliding motion between two bodies has not occurred and is not imminent, then the
magnitude f of the frictional force is always less than the critical force f. and
may be determined by equilibrium considerations. These remarks are summarized
schematically in Fig. 5.19 to illustrate the relations

Static: 0 < f < f. = uN; (5.72)
Dynamic: 0 < f = f; = VN < f.. (5.73)
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Figure 5.19. Graphical interpretation of Coulomb’s laws of static and dynamic friction.

Note that f = f, holds in (5.72) only when relative slip is imminent; and f = f;
holds in (5.73) only while sliding occurs. Further, f = 0 holds only for ideal,
perfectly smooth surfaces for which ¢ = v = 0. Otherwise, since v < ., once slip
is achieved, a smaller force acts to retard the motion. These effects are assumed
to be independent of the interfacial area of contact and of the relative speed of the
dry or lightly wetted surfaces.

The static and dynamic coefficients of friction will depend only on the nature
of the contacting material surfaces, that is, on the materials of which the bodies are
made, their surface roughness quality, their degree of lubrication, their tempera-
ture, perhaps their chemical characteristics, and some other less important things.
Clearly, the values of both p and v must be found by experiments. Also, when
one body rolls on another, there is very little interfacial slip; but the bodies still
experience mutual resistance to rolling, which is called rolling friction. Everyone
knows that it is easier to roll than to slide a body on a flat surface; hence, rolling
friction is considerably smaller than sliding friction. Further, when a layer of fluid,
such as air or water, separates two surfaces, there is a resisting force exerted by
the fluid which is called drag or viscous friction. Both rolling and viscous friction
are determined by laws that are entirely different from Coulomb’s rules of sliding
friction. The effects of viscous friction are discussed in Chapter 6. The interested
reader may consult the sources cited at the end of this chapter for details on these
additional matters. We now turn to some examples.

5.11.3. Equilibrium of a Block on an Inclined Plane

Let us consider the familiar, elementary problem of equilibrium of a rigid
block 98, shown in Fig. 5.18a at rest on an inclined plane 93;. Our focus is on
the general procedure for setting up and solving this problem. In addition, some
elementary results of static friction are also reviewed.

Firstychooser?zrasrarfreeibodys(thersystem to be investigated). Now identify
all of the contact and body forces that act on 93, alone. We may ignore the contact
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force of the surrounding air. (Why?) Then the only body that touches 93, is the
body 9B, so the total contact force acting on 93, consists of the equipollent normal
force N and frictional force f due to %31, or the equivalent reaction force R. The
Earth is the only body that exerts a significant body force on %,, hence the total
body force acting on %, is its weight W. All of the forces that act on Z3,, whether
it be in equilibrium or in motion in an assigned inertial frame are shown in the
free body diagram in Fig. 5.18b. The direction of these forces must be consistent
with the physical situation. In particular, f must act to retard the potential motion
of %B,, N must support %B,, and W must be directed toward the center of the Earth.
The vector g denotes in the figure the direction of the gravitational attraction of
the Earth.

Any inertial frame may be introduced to formulate the problem, but one
choice may be mathematically more convenient than another. The inertial frame
@ = {F;i;} shown in Fig. 5.18b is a good choice because the forces are most easily
related to it. The free body diagram shows that the total force acting on the block
%2 is

F(B,,t)=W+f+N. (5.74a)
Next, express these forces in terms of their components in ¢:
W = W(sinai—coswj), f=—fi, N=Nj. (5.74b)

Here W = mg, f, and N denote the magnitudes of these forces. This completes
the primary phase in the problem formulation.

5.11.3.1. The Force Equilibrium Relations

Since the block is in equilibrium in ¢, in accordance with (5.45), the total
force (5.74a) and the total moment about a point fixed in ¢ of the forces in (5.74b)
must vanish for all times. First, consider the forces. Substitute (5.74b) into (5.74a),
and write the force equilibrium equation,

F(%B,,t) = (Wsina — fi+ (N — Wcosa)j = 0. (5.74¢)

Consequently, each vector component must be zero; and so the normal and fric-
tional forces on 93, are determined by

N = Wcosa, f = Wsina. (5.74d)

5.11.3.2. The Moment Equilibrium and No Tip Conditions

The zero moment equation My (%, t) = 0, the second of the equilibrium
conditions for a rigid body in (5.45), will fix the location d of the line of action
of therresultant'normal-force:NaSincerthe resultants N and f in Fig. 5.18b are
concurrent at a certain point O in the interfacial plane, it is clear that the moment
M of the forces (5.74b) taken about this fixed point in ¢ will vanish if and only if
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the line of action of W also passes through O. Indeed, it is easily shown in general
that three concurrent forces acting on a particle in equilibrium must be coplanar.
(Is the same generally true for a particle in motion?) Hence, the concurrent forces
W, N, and f lie in the vertical plane containing the interface point O and the
center of gravity of the block at the height & above the plane surface. Clearly,
the block will not tumble forward so long the line of action of W falls within the
distance b to the leading edge of the block, and hence for d < b in Fig. 5.18b.
The line of action of W, and hence the point O, is at the leading edge when the
angle o = o, = tan~! b/ h. Therefore, if the plane’s angle of inclination may be
increased to the angle o; without exciting slip so that «; < «,, the critical angle
of sliding friction, the block will be at the verge of tipping over rather than sliding
down the plane. The slightest further increase in the inclined angle «; pushes the
line of action of W ahead of the leading edge and the block will topple down the
plane before sliding impends, because the moment of W about O at the leading
edge of the block is no longer balanced. Henceforward, we shall suppose that the
moment equilibrium condition o < «, for no tipping of the block is respected.
(See Problem 5.28.)

5.11.3.3.  The No Slip Condition

From (5.74a), R = f + N = —W; and hence the resultant contact force must
be opposite to the weight W. Indeed, the zero moment condition for equilibrium in
(5.45) shows that R and W must be collinear. Hence, in consequence of equilibrium,
the angle 6 that R makes with the normal to the inclined plane surface in Fig. 5.18a
is equal to the plane’s angle «. From (5.74d) and (5.72), it is seen that the angle of
repose must satisfy the inequality

tana =

Z|~

< u, (5.74¢)

in order that f shall be less than the critical force f. at which 93, will be at the
verge of slipping. The greatest angle o, for which (5.74e) holds is called the critical
angle of friction; it is given by Coulomb’s law (5.70) as expressed in (5.74¢), that
is,

tano, = % =Lu. (5.74f)

Thus, the tangent of the angle of repose is critical when it reaches a value equal
to the coefficient of static friction, a value that is independent of the weight of
the block B,. When o = a. < «;, the block will not topple over, but the slightest
further increase in the plane’s inclination will cause the block to slide, and our
equilibrium analysis, no longer valid, must be replaced by analysis of the block’s
motion. g

The basic free body formulation procedure used above is applied almost in-
variably in the formulation of all problems in both statics and dynamics. Sometimes
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problems may be solved easily in direct vector notation, so the decomposition of
the forces into components may not be necessary, but more often than not, for sim-
plicity, it is. It cannot be too strongly emphasized that the free body formulation
for the total force is the same for both a statics and a dynamics problem; and it
is important that the student become thoroughly familiar with this method. The
analysis of the block’s motion follows.

5.11.4. Motion of a Block on an Inclined Plane

We now encounter our first application of dynamics in the analysis of the
sliding motion of a block down an inclined plane. Let us continue from where we
left off above and suppose that the plane’s angle of inclination exceeds the critical
angle of friction. Then the block slides down the plane without tumbling provided
that a. < o < ¢, holds. The free body diagram for %, is shown in Fig. 5.18b; it
is the same as before. Consequently, the free body formulation for the dynamics
problem is the same as that for the statics problem and leads again to (5.74a); but
this time the block has a translational motion down the plane, and the appropriate
dynamical equations of motion must be decided. Since the body 93, is rigid and
does not tumble, its motion is determined by the Newton—Euler equation (5.43)
for its center of mass:

F(%B,,t) = W+ £+ N = m(By)a* (%, 1). (5.75a)

The next step is the formulation of the appropriate kinematics. Since the
motion is along a straight line on and down the plane,

a* (B, t) = X"(By, 1) = ¥, (5.75b)

where x*(%,, t) = x*iis the position vector of the center of mass of %, from the
fixed origin F in ¢. Collecting the first equation in (5.74c) and (5.75b) in (5.75a),
we have

(Wsina — f)i+ (N — Wcosa)j = mi*i. (5.75¢)
This yields the component equations of motion
mi* = Wsineg — f and N — Wcosa =0 (5.75d)

to be solved for the normal force N and for the rectilinear motion x*(9,, t) of the
center of mass of %,.

The second equation of (5.75d) determines the normal force N = W cos «,
and Coulomb’s second law (5.71) for the sliding motion gives

f=fa=vN =vWcosa. (5.75¢)
Then with (5.75b) and W = mg, the first relation in (5.75d) yields

a" =X = g(sinc — vcosa)i. (5.75%)
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Thus, the acceleration of the center of mass, indeed the acceleration of every
particle of the block in its parallel translation down the plane, is a constant
vector.

The velocity and the motion of the center of mass point are now easily obtained
by integration of (5.75f), subject to specified initial conditions. Let us suppose that
the block is released from rest in ¢ so that v¥(%3,, 0) = 0 and x*(%3,, 0) = 0 at
t = 0. Then integration of (5.75f) yields

V¥ (B,, t) = gt(sina — v cos )i, then x*(%,,t) = %gtz(sina — vcosa)i.
(5.75g)

We thus find that the sliding motion is independent of the mass of the body—
it is the same for all bodies, both large and small, so long as (5.71) holds
and the no tip constraint is satisfied. This completes the analysis of the slid-
ing translational motion of the block, but some additional points are noted in the
exercise.

Exercise 5.6. Equation (5.75a) shows that in the dynamics problem the resul-
tant contact force R on the block is not opposite to the weight W. Consider at time
t the moment equation (5.44) for the applied forces about the fixed origin F at the
initial position of the center of mass of the block. (a) Prove that My = 0, and thus
show that R is concurrent with W through the center of mass. (See Example 5.5,
page 23.) Therefore, in the absence of rotation, the moment of the forces about the
moving center of mass point also vanishes. (b) Show that the same result follows
when the fixed point F is in the contact plane at the initial position. What is hy in
this case? (See Problem 5.28.) O

Our sliding block example illustrates for a simple translational motion the
more complex nature of the motion analysis of bodies and the importance of the
center of mass. The translational motion of the block is described completely by the
motion of its center of mass particle, regardless of its location in the body. Notice
that the actual identity of the center of mass was unimportant in (5.75f), and it
remained anonymous in (5.75g)—its location (actually the center of gravity in this
case) was important only in the discussion of potential rotational effects expressed
by the no tip condition derived from the moment equation. The anonymity of the
center of mass is typical of many rigid body problems in which rotational effects
are absent.

5.12. Applications of Coulomb’s Laws

TwopproblemsythatyusesCoulomb’sglaws in demonstration of the predictive
value of the principles of mechanics are studied. The first example illustrates the
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Wet Glass

L . ‘-X\

Figure 5.20. A simple experiment demonstrating the pressure induced, friction reduction principle.

phenomenon of pressure-induced friction reduction useful in a variety of engi-
neering applications. The second example demonstrates the application of basic
principles in providing the solution to a major technical problem during World
War IL

5.12.1. The Sliding Can Experiment

An empty beverage can® 93 having identical top and bottom rims is shown in
Fig. 5.20a. The can is placed at A on a sheet of slightly wetted glass, which is then
gradually tilted until the critical angle o, is attained at which sliding of the can is
initiated. Since the can slides on its narrow rim, the critical angle is independent of
whether the open or the closed end of the can is upward. Of course, upon reaching
the edge of the glass at B, the can falls off. The experiment is conducted at room
temperature and the measured critical angle of friction is about 17°. Coulomb’s
laws hold for slightly wetted surfaces, and (5.74f) thus determines the coefficient
of static friction & = tan 17° = 0.30.

The empty can is then chilled and the test repeated by first placing the can
on the wetted glass with its open end upward. The critical angle is found to be the
same as before, thus showing for this case that i is independent of the temperature.
Finally, the can is chilled to the same temperature as before and placed on the wetted
surface with its open end downward. Surprisingly, the can starts to slide when the
critical angle «, is only 1° or 2°; and it slides down the entire length of the glass
held at this very small inclination. But it stops rather abruptly when the open end
extends just beyond the edge of the sheet at B in Fig. 5.20a.

§nAdapted from the article by MyKy Hubbertand WaW. Rubey cited in the chapter references. See also
the related articles by M. B. Karelitz and by B. Noble reported therein.
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This curious phenomenon occurs because after a few seconds the cold, trapped
air expands as it begins to warm, causing the internal air pressure to increase.
Because the surface area of the closed end of the can is greater than that of its
open end, there is a resultant uplifting, internal normal pressure on the closed end
that partially supports the weight of the can, and thus reduces the normal surface
reaction force between the can and the glass. The can stops suddenly at the edge
of the sheet because the pressure is abruptly released. To prove this hypothesis,
we analyze the phenomenon.

5.12.1.1. The Equilibrium Analysis

We begin by showing in Fig. 5.20b the free body diagram of the chilled can
placed on the glass with its open end downward in the inertial frame ®. The body
force is the weight W of the can. In addition to the normal and frictional contact
forces N and f, there is also a resultant internal contact force P on the closed end
of the can due to excess of the internal air pressure over the outside air pressure.
Thus, the total force acting on the can 9 is

F(#B,t)=W+N+f+P. (5.76a)

Introducing in (5.76a) the component representations for W, N, and f given in
(5.74b), noting that P = Pj, and equating each component to zero in the equilib-
rium equation F(43, r) = 0, we find the contact forces

fi = Wsinay, Ny = Wcosay — P, (5.76b)

in which the subscript notation should be evident. We see that Ny, the normal
surface reaction force when the open end is down, is indeed reduced by the excess
internal contact force P.

The case when the open end of the can is upward follows from (5.76b) in
which we set P = 0, adjust the subscripts accordingly, and thus recover (5.74d).
When ¢, is increased gradually until sliding is imminent, (5.74f) yields

n= fcu/Nu =tanogy,, (5760)

o, denoting the critical angle of friction when the open end of the can is upward.
This gives the coefficient of static friction x between the can and the glass.

Now let us return to the case when the open end of the can is downward, and
rewrite (5.76b) to obtain

tanay = (1 — p(ay)) %, (5.76d)

in which p(ay) = P/ W cosay is the ratio of the uplifting force P to the normal
component W cos ¢y of the weight of the can. Hence, 0 < p(ay) < 1. Suppose
thatiegrisrgraduallysincreasedstorthesangle «.; at which the can is at the verge of
sliding down the plane. Now remember that in both instances the coefficient of
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static friction in (5.70) is defined by the ratio of the tangential surface frictional
force to the normal surface reaction force; and since the coefficient of friction must
be the same as before, by (5.76¢), f.4/Ny = fou/N, = tanca,, holds, and (5.76d)
yields the following relation for the apparent critical angle .4 when the open end
is downward:

tano.g = (1 — p(@eq)) tanay,, with  p(a.y) = P/Wcosay. (5.76e)

Because 1 — p(agy) < 1, it follows that oy < o, that is, the apparent critical
angle of sliding when the open end of the can is downward is smaller, perhaps
much smaller, than the actual critical angle when its open end is upward. Now, we
know from the experimental data that y = tan ¢, = tan 17° and the largest critical
angle o, = 2°; therefore, (5.76e) yields p(2°) = 1 — tan2°/tan 17° = 0.886, that
is, the normal internal force on the closed end is very nearly 89% of the can’s
weight. The result (5.76e), therefore, confirms the hypothesis explaining the sliding
beverage can phenomenon—the frictional effect is reduced due to the uplifting,
internal air pressure.

To continue from here in the static case, we shall need to know the weight of a
typical can, and then compare the predicted force P = 0.89 W with the value com-
puted from thermodynamics on the basis of the volume and the initial temperature
of the air trapped in the chilled can at room temperature. Without getting into this,
however, we may ask instead—What can be learned about the subsequent motion
of $?

5.12.1.2. The Motion Analysis

The observation that the can stops abruptly when the open end extends just
at the edge of the sheet is investigated. Singularity functions are used to describe
the discontinuous behavior of P when the trapped air suddenly escapes. A similar
analysis may be carried out without the use of singularity functions, an exercise
left for the reader.

Let £, be the distance moved by the center of the can from its initial rest
position at x = O'to its position at B in Fig. 5.20a, where the trapped air is released.
Afterwards the can will continue to move so that it extends beyond the edge of
the glass an amount say, 8, but it does not fall off. To determine the value of §
compared with £,, we first find the speed of the can as a function of its position
along the sheet.

Let x* = x denote the center of mass coordinate in the inertial frame &, and
begin with the force analysis. The free body diagram of the can is shown in Fig.
5.20b. We suppose that the internal pressure is “turned on” at x = 0 when the can
is placed on the glass with its open end downward, and later “shut off” at x = £,
as the air suddenly escapes when the can reaches the edge of the sheet. Then, with
the aid of the unit step function (1.117), we have

P=[P<x-0>"-P<x—1¢>"]i (5.77a)
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The total force on the can throughout its motion is given by (5.76a), and hence
with (5.74b) and (5.77a), the equation of motion F(%, t) = ma* = mii yields the
scalar component relations for the sliding motion at the critical angle «.4:

mi=Wsinaw — fia, Ni=Wecosay—P(<x-0>"—<x—-1¢,>7),
(5.77b)

wherein by Coulomb’s second law (5.71), fs4 = vN, during the sliding motion.
Then with W = mg and p(a.y) in (5.76e), (5.77b) yields the equation of motion:

X = gcosagy [tanacd —v4vplag)(<x —0 S0 o x— £, >0)] . (8.77¢)

To find the speed X = v(x) as a function of x, we write ¥ = vdv/dx =
d(v?/2)/dx, and recall (1.132) for integration of the unit step function. Then use
of the initial data v(0) = 0 at x = 0 in the integration of (5.77c¢) yields the squared
speed of the can at its current position x(¢):

v2(x) = 2g cOs g [x (tanaeg — v) + vplaea) (< x =0 > — < x — £, >')].
(5.77d)

Now consider the case when the can slides beyond the edge of the glass and
stopsatx = £ > £,.Recalling (1.127) for the unit slope function, setting v(£) = 0,
and introducing p(c.4) from (5.76e), we find from (5.77d) the relation for §/¢,:

12 8 1 — (tanoey)/ 1

6o N L T T ey (5:77¢)
wherein § = £ — £, is the overhang distance at the edge of the sheet. The solution
thus shows that the overhang § is proportional to the length £,, and hence our
analysis discloses an oversight in the experimental description. If the sheet were
too long, § might exceed the can’s radius 7, the critical overhang when the can
slides beyond the edge of the glass; and the can would then fall off. An estimate of
the critical length fo of the sheet, i.e. the maximum initial distance of 93 from the
edge in order that the can will not slide off the end, may be obtained from (5.77¢)
at§ = r; we find

L
)
Since tan .y and (u — v) are small quantities, it follows that the critical length
may be rather large. Hence, for most practical experimental circumstances, our
theoretical analysis predicts that the can generally will stop abruptly and not fall
from the edge.
To get an idea of the size of £,, suppose that v = 0.25 < u = 0.3. Then for
g = 2°, say, the critical length to can radius ratio, by (5.77f), is £,/r = 36.95,
and for the same parameters the can’s overhang ratio is §/¢, = 0.027. Thus, for
arcanyofradiusyrr=33remu(lx3nin)mthes critical distance would be about £, =
1.22 m (4. 00 ft). For a plate of length £, = 25 cm (about 10 in.), say, the overhang

_ V —tan oy
T ey

S &

(5.771)
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will be § = 0.68 cm (0.27 in.), and for £, = 1 m (39.4 in.), a value close to the
length of plate reported for the experiment, § = 2.7 cm (1.1 in.). Both example
values are much smaller than the can’s radius. For a larger value of v, or a smaller
value of «4, the overhang will be even smaller while the critical length of the
plate will grow larger. Thus, starting at a practicable distance from the edge, the
can will travel beyond the edge only a small distance compared with its radius and
will indeed stop rather suddenly.

5.12.1.3.  Technical Applications of the Friction Reduction Principle

The idea that frictional effects may be reduced by an uplifting internal pres-
sure has been applied to study other phenomena. The spectacular geological phe-
nomenon in which huge masses of nearly horizontal rock formations are displaced
great distances, sometimes as much as 10 to 50 miles or more, is an example. For
sufficiently high interstitial fluid pressure in porous rock, fault blocks of rock may
be pushed over a nearly horizontal subsurface. Like our can experiment, due to
uplifting fluid pressure, the fault blocks slide under their own weight over very
much smaller slopes than otherwise would be possible.

Another striking application of pressure induced friction reduction occurred
in the mechanical design of bearings for the 200 inch telescope at the Mount
Palomar Observatory. Frictional forces opposing the steady, precise rotation of the
telescope in tracking the apparent motion of the stars relative to the Earth had to
be very much less than those that would be produced by conventional bearings.
Moreover, for these bearing devices, the torque required to turn the telescope would
demand considerable horsepower, and the required loading would cause excessive
deformation of the telescope’s mounting yoke. The problem of supporting and
moving precisely such a massive structure was solved by floating the telescope on
a thin film of oil under pressure. The entire weight of the telescope, roughly one
million pounds (455, 000 kg), was supported by bearing surfaces separated by a
thin film of oil 0.005 in. (0.013 mm) thick and under pressure ranging from 200
to 500 psi (1.4 to 3.4 x 10% N/m?). This design concept reduced considerably the
power required to drive the massive telescope to only 1/12 horsepower!

These examples underscore the utility of the friction reduction principle il-
lustrated by the sliding can experiment. Our next example applies the principles
of mechanics to explain critical U.S. Navy torpedo failures during World War II.

5.12.2. Damn the Torpedoes!

U.S. Navy submarine operations! in the early months of World War II reported
recurring instances of frustrating torpedo malfunction and detonation failures.

1 This narrative is adapted from the referenced articles by A. A. Bartlett, D. Murphy, and the book by
T. Roscoe: All discuss the problem of torpedo failures in U.S. Navy submarine operations. See also
S. E. Morison.
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Faced with a shortage of torpedoes and state-of-the-art magnetic detonators that
proved greatly unreliable, Admiral Charles A. Lockwood in Pearl Harbor ordered
the magnetic detonators replaced with impact detonators. But in no time at all
worrisome reports of torpedo failures continued to come in. More than a year passed
with no solution in sight when good fortune in disguise appeared unexpectedly.

On July 24, 1943, the U.S. submarine Tinosa was patrolling west of Truk with
16 torpedoes aboard when Lieutenant Commander Lawrence R. Daspit sighted the
unescorted oil tanker Tonan Maru No. 3, one of the largest in the Japanese fleet,
at an unfavorable great range of 4000 yards (3658 m). Four torpedoes were fired
in a fan pattern oblique to the tanker, actually an unfavorable angle of attack. Two
found their target and exploded near the tanker’s stern to slow the great ship. Two
more were released. Daspit at the periscope, witnessed two explosions that brought
the Tonan Maru to a stop, dead in the water, smoking and starting to settle by the
stern, but not sinking. At the ideal range of about 875 yards (800 m) and now
stationed for a perfect shot at 90° off the tanker’s bow, Daspit setup for the kill.
The Tinosa fired a single torpedo that struck normal to the side, nearly amidships
of the giant tanker. The torpedo was heard to make a normal run, followed by
silence. Daspit witnessed only a spray at the point of impact. The torpedo was a
dud! Two more perfect shots followed—both duds. The remaining “tin fish” were
pulled from their tubes and their settings checked, all in good order. Over the next
few hours, six additional torpedoes were launched one at a time. Each failed to
explode on impact. Damn the torpedoes—all duds! A frustrated Daspit returned to
Pearl Harbor with his last torpedo, and Japanese salvage vessels from their naval
base at Truk saved the Tonan Maru. The fact that many similar torpedo failures
in the early months of the war slowed U.S. efforts to contain Japanese advances
across the South Pacific islands and the Philippines, underscores the significance
of this major technical problem.

The Germans experienced similar frustration with magnetic influence torpedo
failures, many exploded prematurely, others missed their target, or failed to explode
on impact. A particularly significant incident occurred on the morning of October
30, 1939, the day before Sir Winston Churchill’s scheduled meeting aboard the
battleship Nelson with Admiral Sir Charles Forbes, Commander-in-Chief, and
Admiral of the Fleet Sir Dudley Pound. Two weeks earlier on October 14, the
German U-boat commander, Lieutenant Commander Gunther Prien, slipped his
U-47 into the center of Britain’s main naval harbor at the supposedly impregnable
Scapa Flow. Prien maneuvered there on the surface, undetected, and around 1 a.m.
attacked and sunk at anchor the magnificent British battleship HMS Royal Oak,
afterwards escaping to become a celebrated naval hero.! Following this disaster in

I On March 8, 1941, the destroyer Wolverine while escorting a convoy in the North Atlantic, sighted
the U-47 running initially on the surface, and attacked and sank her by depth charges. The remarkable
and daring Lieutenant Commander Gunther Prien, age 33, and his entire crew lost their lives. See the
book by G. S. Snyder in the chapter references for the full story of the Royal Oak disaster, including
many tales of German submarine commander frustration with torpedo failures.
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which 833 officers and men lost their lives, an urgent conference was arranged for
October 31, between Churchill and his admirals aboard the Nelson, the flagship
of Admiral Forbes. But another disaster was unfolding during the morning hours
of the 30th, when U-56, commanded by Lieutenant Wilhelm Zahn, sighted the
battleships Nelson and Rodney, accompanied by the battle cruiser Hood and a
screen of ten destroyers. Zahn maneuvered within range and released a spread of
three torpedoes on Nelson. Three impacting thumps against the battleship’s side
were heard in U-56, but no detonation. All duds! The angry Zhan turned away and
reported his aborted attack to U-boat Command, unaware of the true significance of
his failed attempt to sink the Nelson. Nearly every U-boat commander, including
the celebrated “ace” Gunther Prien, reported torpedo failures; sometimes every
“eel”, whether set to explode on impact or set for magnetic detonation, was a dud.

5.12.2.1. Identifying the Problem

‘What was wrong with the German torpedoes? A special Torpedo Commission
discovered that the fault was not with the torpedoes themselves, but with the depth
at which they were set to pass beneath the target’s hull, the point at which the
magnetic pull of the victim was supposed to trigger the warhead. Errors of design
caused the weapon to run too deep, and countermeasures applied by the British also
may have contributed to the German problem. The delicate magnetic exploders
eventually were replaced with dependable impact exploders. By the time the U.S.
entered the war in Europe, the U-boats were scoring hit after hit with shocking
efficiency. (I do not know of any studies on German torpedo defects responsible
for impact failures reported above.)

What was wrong with the U.S. Navy’s torpedoes? The torpedo returned by
Daspit to Pearl Harbor, checked and later test fired at underwater cliffs of Ka-
hoolawe Island in Hawaii, also was a dud. Examination of the torpedo’s detonator
mechanism revealed that the firing pin that would set off the warhead had released,
but it failed to strike the primer cap with sufficient force to trigger it. Impact exper-
iments were conducted to study the problem. To model a normal impact against
the side of a ship, torpedoes loaded with cinder concrete rather than explosives
were dropped from about 90 ft (27 m) onto a steel plate. Seventy percent of the
tests revealed the same kind of trigger failure on normal impact. In actual sub-
marine operations, however, an oblique impact was believed more likely to occur.
To simulate this condition, the steel plate was set at an angle so that the torpedo
would strike a glancing blow. It was found that the exploder mechanism gener-
ally functioned properly. The investigation now focused on the firing pin design, a
small device weighing several ounces. When released, a spring drove the pin along
parallel guide rods perpendicular to the torpedo axis. The perpendicular impact
force of deceleration was found to be about 500g’s, that is, 500 times the force of
gravityyperunit:masssThis force.produced:a guide rod Coulomb frictional compo-
nent of nearly 190 Ibs on the firing pin. The trigger spring was unable to overcome
the frictional force and drive the firing pin with sufficient force against the primer
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Figure 5.21. Model of a torpedo exploder mechanism.

cap. In an oblique, glancing impact, the frictional effect was less severe and the
torpedoes often exploded on impact. So, nearly 2 years after the start of the war,
between July and September 1943, as a fortuitous consequence of Daspit’s failed
attack on the Tonan Maru, the torpedo exploder mechanism problem was finally
identified and solved.®

5.12.2.2. The Model Analysis

The problem of U.S. Navy torpedo failures was finally explained by elemen-
tary principles of mechanics involving Coulomb friction. To explore this, consider
the simple model of the exploder mechanism shown in Fig. 5.21. The free body
diagram of the firing pin modeled as a block of weight W = mg is shown in
Fig. 5.21a. The actual direction of g may vary from that chosen in the exam-
ple. The trigger spring driving force from its precompressed state is a known
function F,(y) of the firing pin displacement y; N denotes the normal (impulsive
reaction) force exerted by the guide rods, and f; is the dynamic friction force.
So, the total force on the block in its sliding motion is F = F; + N+ W +f; =
—Ni+ (Fi(y) — W — f3)j, in which f; = vN and W = mg.

Here we have a motion of the mass m relative to the rapidly decelerat-
ing torpedo frame. Therefore, the total acceleration of m in the inertial frame
¥ = {F;i} is given by a = a, +ayp = yj — a,i, in which a, = §>x/81* = Jj
is the relative acceleration of the firing pin in the moving torpedo frame, and

88 The Tinosa soon returned to the hunt, and by the end of the war she had sunk 16 Japanese vessels,
64,655 tons in all, and survived. In both the number of ships and tonnage sunk in the Pacific theater,
she ranked 19" among the top 25 pig boats in the list of leading individual submarine scores. (See
Roscoe, p. 446. According to this expert (p. 442), “submarines played the leading role in Japan’s
defeat. They wrecked Japan’s merchant marine. They sank a sizeable chunk of the Imperial Navy.
They bankrupted Japan’s home economy with a blockade which established a new adage: viz., an
island is a body of land surrounded by submarines.”)
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ag = a, = —a,i is the rigid body deceleration of the torpedo in W. Therefore, the
corresponding scalar components in Newton’s law (5.39) are —N = —ma, and
Fy(y) —mg — vN = my, from which the relative acceleration of the firing pin
during the rapid deceleration period is given by

1
V= —=F(y)— (g +va,).
m

This equation essentially determines the force with which the firing pin will
strike the primer cap to detonate the warhead—it reveals both the problem and
its easy solution. The contribution of g is negligible compared to va,. The spring
force that drives the firing pin is effectively reduced by the increased frictional force
arising from the large deceleration of the torpedo in its normal impact. Therefore,
because of its reduced relative acceleration , the firing pin is unable to strike the
primer cap with sufficient force to trigger the warhead. The simplest direct solution
is to increase the spring force, reduce the firing pin’s mass and, if possible, reduce
the coefficient of friction. The predictive value of the principles of mechanics
demonstrated in this and in previous examples is repeated many times in future
problems.

5.13. What is the Inertial Frame?

In addition to specifying a law of equilibrium for every material universe,
Newton’s first law provides the criterion for deciding whether a reference frame
is an inertial frame. The inertial frame in Newton’s laws is an undefined entity,
a primitive concept, but its choice is not arbitrary; it must be a reference frame
relative to which a uniform motion can be sustained without force. Otherwise, the
laws are not applicable, in fact, they have no meaning until the inertial frame itself
is identified. But the first law does not tell us which reference frame is the preferred
referential frame, it merely assumes that such a reference frame exists. Therefore,
what physical reference frame (or body) in the real world may be identified as
Newton’s preferential frame?

Plainly, every motion can be determined in a reference frame that is absolutely
at rest. But a body can be identified as fixed in space only relative to other bodies
known to be fixed in space, an evident irresolvable tautology. So, the idea of an
inertial reference frame (or body) being fixed in space is meaningless. In its place,
our most natural choice appears to be the Earth frame. We know, howeyver, that the
Earth’s principal motion has a subtle, but demonstrable effect on the oscillations
of a pendulum and on the trajectories of shells and falling bodies. Such relative
motion effects preclude the possibility of an arbitrary uniform motion of a particle
relative to the Earth without intervention of a controlling force, as we shall see
shortly. Thenswhatyissthe reference frame relative to which the Earth’s motion
may be referred, and under what circumstances may the Earth frame be used as a
Newtonian frame?
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It appears time after time that the remote stars visible in the night sky always
are in their same place relative to the Sun. And these “fixed stars” are used to obtain
anavigational fix on our motion. While sophisticated measurements reveal that the
distant stars are, in fact, not fixed relative to each other, the so-called “fixed stars”
are chosen as a physical model of an inertial reference system for the real world,
because the remote stars comprise a set of objects (bodies) whose perceptible mu-
tual distances have not changed significantly over countless centuries. Therefore,
the astronomical frame of the fixed stars is a prime candidate for a reference system
that may approximate an inertial frame to a precision sufficient for our needs. To
evaluate the accuracy of this assumption, we may compare the observed physical
behavior of bodies with theoretical predictions of that behavior based on Newton’s
laws in the astronomical frame. Well, it happens that theoretical predictions of the
effects of the Earth’s rotation on the swing of Foucault’s pendulum, on the motion
of missiles and falling bodies, and various other phenomena in the world, stand in
sharp agreement with observations. Therefore, the real world, physical reference
frame that corresponds to the ideal, abstract inertial reference frame in Newton’s
laws may be tentatively identified as a reference frame in the distant stars. The
motion of the Earth relative to the astronomical frame is known, so we are now
in a position to evaluate the effects of using the Earth as a first approximation to
an inertial frame. The effect of the motion of a reference frame on the form of the
laws of motion is described next.

5.14. The Second Law of Motion in a Noninertial Frame

Now, we are, after all, concerned mainly with motion relative to the noninertial
Earth frame, or perhaps another convenient moving reference frame. Therefore,
we shall need to express Newton’s second law in terms of the acceleration §2x/5¢>
apparent to a moving observer. We thus recall (4.48) for the total acceleration of a
particle referred to a moving frame and rewrite the second law (5.39) to obtain the
equation of motion for a particle of mass m having a motion relative to a moving
frame ¢:

may(P,t)=F—m(ap + wy x (wy xX)+dy x X+2ws xV,). (5.78)

Here F = map is the force acting on the particle P whose absolute acceler-
ation in the Newtonian frame ® is ap = a(P,t); and a,(P, t) = 6’x/8t* and
v, = V,(P,t) = 8x/8t are the respective acceleration and velocity of P relative
to @.

The form of Newton’s second law (5.78), in addition to the total force F,
exposes several “fictitious” forces apparent only to the moving observer in ¢, to
whonvitappears that the particleis/actedupon by a total force

Fo=F-—m(ap+wsx(wsxx)+d; xx+2wsxV,), (579
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called the apparent force. The pseudoforces —mw ; x (wy x X)and —2mw ¢ X v,
are called the centrifugal force and the Coriolis force, respectively. The total of
the pseudoforces, namely,

F,E—m(ao+wfx(wfxx)+u'.:fxx+2wfxv¢), (5.80)

is called the inertial force. Use of (5.79) in (5.78) now yields Newton’s second law
of motion relative to any moving frame @, including the Earth frame:
82
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The basic difference between (5.81) and (5.39) is that the force F, in (5.79)
is not the total of forces due purely to the interaction between pairs of bodies in the
universe. The additional inertial force (5.80) arises solely from the motion of the
moving observer’s frame of reference. Therefore, to a moving observer, the actual
forces that act on a body are not always what they may seem to be.

We are now positioned to show that there exists relative to the inertial frame
infinitely many moving reference frames with respect to which Newton’s laws hold
unchanged. Hence, each of these frames is an inertial reference frame. Indeed, we
need characterize only those frames for which the inertial force (5.80) vanishes
for all motions relative to ¢, i.e. those frames for which

Fy,=ma,(P,t)=m (5.81)

a0 +ws X (W xx)+wp xX+2wrxv,=0, (5.82)

for all x(P, t) and v,(P, t). This is possible when and only when both ap =0
and wy = 0, that is, if and only if ¢ has a uniform translational motion relative
to the inertial frame &. In this case, from (5.79) and (5.81), F, = F = ma (P, 1)
holds for all motions of the particle P in the moving frame ¢. In particular, F, = 0
holds, if and only if the particle P has a uniform motion relative to ¢, and hence
¢ is an inertial frame.

Now let us return momentarily to (5.81) and extend the definition of an
equilibrium state to a particle in a moving frame ¢. A particle P is in equilibrium
relative to ¢ if and only if P is at rest or in uniform motion relative to ¢. Then, by
(5.81),

equilibriumin ¢ & a,(P, 1) =0 & F,(P,1) = 0. (5.83)

In this case, by (5.79), the force F applied to P to control its uniform motion in ¢
is balanced by the inertial force (5.80): F + F; = 0. Hence, the frame ¢ is not an
inertial frame. In general, a particle in equilibrium in ¢ will not be in equilibrium
in the inertial frame @, and vice versa. In fact, by (5.38), the particle P may be in
equilibrium simultaneously in @ if and only if —F; = F = 0 so that (5.82) holds
for all uniform motions X = Xo + Vot relative to ¢, where Xg and vo = v,(P) are
constant vectors; but (5.82) holds when and only when frame ¢ has a uniform
translational motion relative to the inertial frame in the distant stars.
In.sum;everynonrotatingsuniformiy-translating reference frame is a Newto-
nian reference frame in which Newton’s laws may be applied. Moreover, a particle
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Figure 5.22. Uniform motion of a particle P relative to a moving frame ¢ = {O; e;}.

that is in equilibrium in one inertial frame ® is in equilibrium in every frame ¢
having only a uniform motion of translation relative to ®.

Example 5.9. A particle P in Fig. 5.22 has a radially directed, uniform
motion relative to a frame ¢ = {O; ¢} that is rotating with angular velocity w ¢
relative to the inertial frame & fixed in the distant stars. The origin O has a constant
velocity vp in @. What is the force acting on the particle, and under what conditions
does it vanish?

Solution. We wish to find F = F(P, t) in (5.78). Since the motion of P
relative to ¢ is uniform, the particle is in equilibrium relative to ¢. Hence, (5.78)
and (5.83) yield

F=m(@+w;xWsxX)+wsxX+2wsxV,). (5.84a)

Moreover, the origin O has a constant velocity, so ap = 0. Further, with x = re,,
wehave v, = 6x/8t = Fe;, whichis constant relative to frame ¢ = {O; €}, shown
in Fig. 5.22. Thus, noting that w ; = we3 and w s = @e; in the astronomical frame
® = {S;1;}, we find by (5.84a) the force that acts on the particle to control its
uniform motion in the moving frame ¢:

F(P,t) = —mrow’e, + m(ré + 2wr)e,. (5.84b)

Therefore, frame ¢ is not an inertial frame—the uniform motion in ¢ cannot be
sustained without the application of force in the inertial frame ®. Clearly, F = 0
in @ if and only if @ = 0, that is, when and only when the frame ¢ has a uniform
translationalimotiomwithwelocitysvgrimthe inertial frame @, then ¢ is an inertial
frame too. g



72 Chapter 5

5.15. Newton’s Law in the Noninertial Earth Frame

Now let us consider the influence of the Earth’s motion on the form of
Newton’s equation of motion for a particle moving relative to the noninertial Earth
frame. Introduce an inertial frame ® = {F; A, B, C} fixed relative to the distant
stars (see Fig. 5.23), and recall the notation used in (4.92) where w s = {2 approx-
imates the constant total angular velocity of the Earth frame ¢ = {O; «, B, v}
relative to @, x = r is the position vector from the Earth’s center C to a particle P
moving on or near the Earth’s surface, and ap = ac denotes the acceleration of C
in ®. Then the apparent force (5.79) acting on P in its motion relative to ¢ becomes

F, =F—m(ac + Q X (2 X r) +20QXv,). (5.85)

First, determine a.c by using the second law in which the total force acting on
the Earth as a center of mass object of mass mg at C is to be estimated. All bodies
in the universe exert a gravitational pull on the Earth, whose mass is estimated
at 5.98 x 10% kg (1.36 x 10?2 tons). In view of the result (5.58) for spherical
bodies, the gravitational actions of all bodies—the Sun and the Earth, the Earth
and the Moon, the Earth and an apple—are modeled as the attractions of particles.
Therefore, an estimate of the total gravitational force acting on the Earth may be
obtained by regarding the Earth E as a free body, in Fig. 5.23, acted upon by the
particle P, the moon M, and the sun S. The equation of motion for the center of
mass of the Earth is thus given by

mgac = mg(gs + gu + 8p) + Fp, (5.86)

in which g5, g5/, and gp are the respective gravitational field strengths at C due to
the principal surrounding bodies S, M, and P; and F, is the resultant of all other
forces that may act on E, including other weak gravitational forces and the contact
force exerted by the Earth’s atmosphere, for example. This estimates ac in (5.85).
Now consider the free body diagram of the object P in Fig. 5.23. The total
force acting on P is F = m(g; + g, +g;) + Fy, where g;, g, g; are the field
strengths at P due to the bodies S, M, and E, respectively, Fo is the total of
all other forces acting on P and mpgp = —mg; is the mutual gravitational force
between E and P. Use of these relations and (5.86) in (5.85) yields the equation
of motion (5.81) for the object P in the Earth frame ¢:
m
ma, = Fo + mgs (1 + m—> +m (g — 8s) +m (g — gm)
" y (5.87)
——Fg—m(Q2x(Qxr)+202xv,).
mg
In view of the great distances separating the principal bodies, some further
approximationssarerintroducedstorsimplify; (5.87). For the motion of P on or near
the Earth’s surface, we have [r| = r3 in Fig. 5.23. Hence, the other distances
shown there may be approximated by r; = rs and r, = ry so that g; = g¢ and
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Frame ¢

Figure 5.23. Free body diagram of a particle P and principal interacting bodies—the Earth, the Moon, and
the Sun.

g> = gy, very nearly. Clearly, the ratio m/mg is infinitesimal, hence negligible
compared with unity, and even though |Fg| may be large, we may assume that
m |Fg| /mg < |Fp|. Use of these further approximations in (5.87) yields the
final reduced form of Newton’s equation of motion for a particle in the noninertial
Earth frame:

ma, = mgz+Fo—m (2 x (2 x1)+2Q x V), (5.88)

where mgj is the gravitational force on P due to the Earth, Fy is the total of all
contact and nongravitational body forces that act on P, and the other terms are
inertial forces due to the Earth’s rotation.

5.16. The Apparent Gravitational Field Strength of the Earth

oth apparent to an Earth observer is af-
iation in its shape. To understand this
vitational field strengths are related, let
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us consider an object P at rest relative to the Earth so that v, = 0 and a, = 0.
Then (5.88) reduces to the equation of relative static equilibrium:

Fo+m@-—-QxQxr)=0. (5.89)

Suppose P rests on the smooth, horizontal surface of a highly polished desk. Then
Fo is the normal, desk top reaction force on P, and Fp + mgz =(—Fy + mg3)n,
wherein g3 = gsn and n is the central directed, unit normal vector to the Earth’s
spherical surface. Note, however, that the centrifugal force termin (5.89) is directed
outward and perpendicular to the Earth’s rotation vector €2, so it has components
both normal and tangential to the Earth’s surface at the colatitude 6, namely,

—mQ x (2 xr)=mrQ*sinf(cosd t — sinf n), (5.90)

where t is the southward directed, unit tangent vector to the surface at P. Because
there is no other tangential component in (5.89) to balance the tangential compo-
nent of the centrifugal force, we find the contradictory result = 0; otherwise,
the relative equilibrium of an object at ease on a polished desk is not possible!

This dichotomy implies that the general equation (5.88) for the motion of a
particle relative to the Earth cannot be a correct approximation. Review of earlier
estimates used to obtain (5.88), however, suggests that the problem is more subtle
than the possibility of error introduced by our treating the Earth, the Sun, and
the Moon as particles separated by great distances and neglecting small terms in
m/mg. Suppose, on the other hand, that the gravitational force in (5.89) must
have a small tangential component that balances the tangential centrifugal force
component in (5.90). Though this correction addresses objections raised here, it
implies that our spherical model of the Earth is inaccurate.

Let us consider the revised model shown in Fig. 5.24. Suppose that the
attractive force mgs of the Earth on P has a small northerly directed, tangen-
tial component —mgs3 sinat to balance the tangential centrifugal force compo-
nent mr*§2 sin 6 cos Bt shown in Fig. 5.24a. If the gravitational force exerted by
the Earth is directed toward its center C, while F, is normal to its surface, as
shown in Fig. 5.24, then the Earth must flatten somewhat at the poles and bulge
slightly at the equator. In fact, geophysical theory and measurements show that
the Earth is an oblate spheroid with a mean equatorial radius rz = 3963 mile
(6378 km) and a smaller mean polar radius rp = 3950 mile (6357 km), approxi-
mately. The accepted international value for the amount of flattening at the pole is
u = (rg —rp)/reg = 1/297. The centrifugal force arising from the Earth’s rota-
tion thus produces a measurable equatorial bulge of the Earth. Therefore, to derive
amore precise equilibrium result and resolve earlier contradictions, it is necessary
to account for the Earth’s oblateness in computing the gravitational field strength
for a spheroid. This is a difficult problem that we shall not need to discuss here. The
interested reader may consult the chapter references by Heiskanen and Meinesz
and by Ramsey for further details.

To.account.for.polar flattening;let-us,suppose that the direction of the actual
gravitational force mgs; due to the Earth is still directed toward its center C in
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Figure 5.24. The real and apparent gravitational forces acting on a particle P at rest relative to a spheroidal
Earth model.

Fig. 5.24. For equilibrium of P relative to the oblate spheroidal Earth, (5.89) now
yields

(=Fo + mgs cosa — mrQ?* sin@ sin f) n
(5.91)
+ (—mgssina + mrQ?sinf cos g) t = 0.

In this equation, B is the geographical colatitude angle, the angle between the polar
axis of rotation and the outward, normal vector to the surface; 0 is the geocentric
colatitude angle, the angle between the polar axis and the radial line through the
Earth’s center; and @ = 0 — 8 is their angle of deviation. (See Fig. 5.24.) Thus, the
normal reaction force Fo in (5.89) balances the apparent weight mg of P, which
varies slightly over the surface of the Earth. That is, Fp + mg = 0, wherein the
apparent gravitational field strength g is defined by

g=g — Qx(Qxr). (5.92)

This rule shows the effect of the Earth’s rotation on the real gravitational field
strength g;. The tangential component of g vanishes in accordance with (5.91):

—gzsina 4+ rQ?sinf cos(d — o) =0; (5.93)
and (5.92) becomes
g =gn= (g cosa —rQ’sinf sin( — ) m, (5.94)

SR Zyl_i.lsl

normal vector to the Earth’s surface.
arent acceleration of gravity; it is the
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gravitational field strength apparent to an observer stationed at a point on the
surface of the Earth at the geographic colatitude 8 = 6 — a.

The apparent acceleration of gravity is always perpendicular to the Earth’s
surface. This is the direction n along which a plumb bob is attracted when freely
suspended by a string. In this case, Fy is the tension in the line. The angle o of
the plumb line’s deviation from the direction of the real gravitational vector g; in
Fig. 5.24 may be determined by (5.93), but we must remember that g3, r, and o
vary with the angle 6. It can be shown by (5.93) and (5.94) that

g3 = g (cosa + Asin’6), (5.95)

in which sina = Asinfcosf and A = rQ?/g, with r = r(6) € [rp, rg]. Since
A is very small (see (4.89)), the angle « is a very small quantity. Retaining only
terms to the second order in « in (5.95), we derive the estimates

2 A2 2 A .
g3=g|1l+ Asin 9—?sm 20 |, a=§sm29. (5.96)

A final simplification of (5.96) in which terms of order A% and « A are omitted
and r is approximated by its mean value R, say, is given by

RQ?
g3 =g+ RQcos’ A = g — RQ%sin’A, o= -, sin2k, (597
g

where A = 7 — 6 + a is the geographic latitude, the angle between the equatorial
plane and the outward normal to the Earth’s surface. This simple estimate relates
the values of the real and apparent field strengths as functions of the latitude A,
and it gives an estimate of the angle of deviation. In particular, g3 = g at the poles
and g3 = gr = g + RQ? at the equator. Although g is closely approximated by
the apparent gravitational field strength g, we have not determined the variation
of g as a function of 6 or A. This is given accurately by the international gravity
formula.

When r and g are known as functions of 6 or A, the real gravitational field
strength and its angle of deviation from the normal to the Earth’s surface may be
found. A more advanced analysis in potential theory is used to determine g(1),
and ellipsoidal geometry is applied to determine r(A, 1) in terms of the geographic
latitude A and the flatness factor u. These details need not concern us. It turns out
that the general formulas for the Earth’s variable radius r and for the apparent
acceleration of gravity g are given as

.2 SMZ .2
r(A,u)=rg {1 —pusin“ 1+ e sin“ 2A |, (5.98)
g(A) = gr(1 + asin® A — bsin® 21), (5.99)

wherein a and b are certain constants. It is seen that (0, u) = rg and g(0) = gg
are the respective.equatorial values.of #(A,, 1) and g(A). See the text by Heiskanen
and Meinesz in the References.
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The ellipsoidal shape function with . = 1/297 adopted by the International
Geodetic Association at Madrid in 1924 is given by the international ellipsoid
Sformula:

r = 6378.388(1 — 0.0033670 sin® A 4+ 0.0000071 sin® 21) km. (5.100)

The constants gg and a in (5.99) are obtained empirically from gravity measure-
ments, but b is derived theoretically. The accepted values of these constants adopted
by the General Assembly of the International Union of Geodesy and Geophysics at
Stockholm in 1930, and reaffirmed unanimously at the Toronto, Canada Assembly
in 1957, appear in the international gravity formula:

g = 9.780490(1 + 0.0052884 sin” A — 0.0000059 sin® 21) m/sec?. (5.101)

This formula provides the apparent local acceleration of gravity as a function
of the geographic latitude. The value of g varies from 9.83 m/sec? at the poles to
9.78 m/sec? at the equator. Our earlier rough calculation based on (5.61) for an ideal
spherical Earth, namely, g = 32.23 ft/ sec? = 9.824 m/sec?, stands in excellent
agreement with these extremes. The standard value adopted internationally for
the apparent acceleration of gravity at sea level and at latitude A = 45° is g =
32.1740 ft/ sec?> = 9.80665 m/sec?. It is customary to use the rounded value g =
32.2 ft/sec? = 9.80 m/sec” in numerical examples. In the sequel, however, we shall
sometimes use g = 32 ft/sec? to simplify a numerical illustration.

The apparent weight mg of a body 9 is its weight apparent to an observer
on the Earth; it is the weight, for example, that one measures when standing on a
bathroom scale! We thus witness again that to a moving observer the actual force
acting on a body is not always what it may seem to be. The difference between the
apparent weight of 98 and its absolute, or real weight relative to the Earth in the
inertial reference frame is quite small. Nevertheless, it is our custom to measure
the weight of a body relative to our moving Earth frame, so no confusion should
arise if, henceforward, the apparent weight of a body 3 relative to the Earth is
called, briefly, the weight of 98. Then g =gn in (5.62) is the apparent acceleration
of gravity, and the weight of 3is W = mg = mgn, where nis the inward directed,
unit normal vector to the Earth’s surface.

5.17. Newton’s Law in the Earth Frame

The foregoing analysis of the effect of the Earth’s motion on the real weight
of a body is based on static considerations. It is clear, however, that the terms in
(5.92) are independent of the particle’s motion relative to a fixed point Q on the
Earth’s surface, and the same terms may always be grouped in the same way in
the dynamical equation (5.88) in which r is replaced by the current position vector
of P-fromsCpwrittensassx-=r=pywhere p is the position vector of P from Q.
Thus, for motion on or near the Earth’s surface |p| < |r|, and hence the additional
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centripetal acceleration term [€2 x (2 X p)| < [ x (2 x r)| is negligible in
comparison with all other terms in the equation. Therefore, in all cases of mo-
tion on or near the Earth’s surface, the form of Newton’s second law of motion
(5.88) relative to the Earth frame simplifies to

ma, =F —2mQ x v, (5.102)

in which the total force F acting on the particle P includes its apparent weight
W = mg and the total Fy of all other forces that act on P. The Coriolis force
in (5.102) is the only term that reflects directly the influence of the Earth’s mo-
tion. Its maximum value, however, is about 1.6 x 10~ sec™! times the magni-
tude of the relative momentum m |v(,,] , 80 its contribution is generally small in
comparison with all other forces in (5.102). Consequently, very often the approx-
imation of (5.102) to the classical Newtonian law in a noninertial Earth frame
is used in engineering practice. Indeed, our examples demonstrate that excel-
lent analytical predictions can be obtained by taking the Earth frame as the pre-
ferred frame. Nevertheless, Coriolis effects are sometimes surprising and difficult
to predict without careful analysis, so use of (5.102) for the motion of a parti-
cle relative to the Earth is of interest. Some examples are explored in the next
chapter.

In general, however, in problems of motion referred to a noninertial reference
frame ¢, Newton’s law (5.81) may be used in ¢ provided that the total “force”
F, defined in (5.79) includes all inertial forces and all applied forces. The inertial
forces can be significant in noninertial frames other than the Earth frame, and they
should never be thoughtlessly ignored.

This concludes the introduction to the foundation principles of classical me-
chanics created by great mathematicians of the seventeenth and eighteenth cen-
turies. More about this grand and bountiful heritage follows in the chapters ahead.
We end this chapter with an advanced topic borrowed from continuum mechanics.
Here we focus on its application to the problem of the internal interaction between
two particles. The result is useful in our study of the internal potential energy of a
system of particles in Chapter 8. Study of this topic requires familiarity with the
material in Chapters 3 and 4, the relevant parts of which are sketched below. The
reader who may have omitted this material in a first reading, however, will suffer
no significant loss of continuity in moving on to the next chapter.

5.18. Frame Indifference and the Law of Mutual Internal Action

Consider two reference frames ¢ = {O;i;} and ® = {F;I;}, the frame
d being the preferred frame so that I; are independent of ¢, though this is
not really essential. Recall the basis transformation tensor Q(#)=ix(t) ® Ix so
thatyiz(1)=1Q @) Ixnissthe Euler rotationyof the basis of frame @ into the ba-
sis of frame @. Of course, to an observer in frame ¢, the bases vectors i; are
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independent of ¢, as discussed in Chapter 4. Let x,(P, ¢) denote the position
vector in @ of a particle P from the origin of ¢, but referred to ¢ so that
Xo(P, t) = xp (P, )ig(t) = Q(t)[xk(P, t)Ik]. We define the relative position vec-
tor Xo (P, t) = xx(P, t)I; referred to @, and thus obtain the transformation rule
relating the relative position vectors:

Xo(P, 1) = Q()xo(P, 1). (5.103)

The relative position vectors have the same time dependent components x(P, t) in
both frames. Therefore, a transformation of this kind is said to be frame indifferent,
or objective. (Here and below, see Chapter 4, pages 313-317.)

5.18.1. Change of Reference Frame

A change of reference frame is characterized by an orthogonal linear trans-
formation that preserves distances and angles, and for which all observers use
the same universal clock so that trivial, constant time shifts may be ignored. The
change of frame is exhibited in terms of the position vectors X¢ (P, ¢) and X, (P, t)
of the same particle from the origins F' and O of the respective frames ® and ¢ in
accordance with

Xo(P,1) =Bg(0,1) +x,(P,t) = Bo(0, 1) + Q)Xo (P, t), (5.104)

where B (O, 1) is the position vector of O from F and we recall (5.103). Hencefor-
ward, for simplicity of notation, let us write X'(P, t) = Xo(P, 1), ¢(t) = Bo(0, 1),
and x(P, t) = x¢(P, t) so that the change of reference frame is given by

X'(P, 1) =~v(x, 1) = c(t) + Q()X(P, 1). (5.105)

Thus, ¢(¢) is the position vector of O in frame ® and Q(¢) is an orthogonal tensor
that specifies the rigid rotation of frame ¢ relative to frame ®. It is easy to verify
that the change of frame preserves distance between points and angles between
lines.

From now on, let us consider (5.105) as a general change of reference frame
mapping ¢ = {O; e} into ¢’ = {O’;e,}. Then x and X' are the respective posi-
tion vectors of the same particle P from the origins O and O’ at time ¢, and
~(X,1) : ¢ — ¢ is shorthand for the right-hand side of (5.105). We may exclude
trivial rigid body rotations of 2n7 rad, for n = 1,2,.... For all of these and
for a null rotation, Q = 1. A pure translation is thus described by Q = 1 so that
Y(x, t) = c(t) + x(P, t). Also, we recall from (3.88) that a rotation tensor Q pre-
serves the axis of rotation e, and hence all points u = ue along that axis, that is,
Qu = u. Therefore, Qv(u) = v(u) holds if and only if the vector v(u) is parallel
tosu:and-hence - v(u)=g(wuswheresg(w)is a scalar-valued function of u. These
results are needed below.
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5.18.2. The Principle of Material Frame Indifference

It is commonly assumed, without actually saying so, that the internal force
in a spring is independent of the particular situation in which the spring might be
used. We take for granted that the same extension of the same spring in a fixed
reference frame and in any other reference frame having an arbitrary motion, gives
rise to the same internal spring force and vice versa. Accordingly, the internal
force-extension law of the spring (introduced in the next chapter) is the same at the
top of a high mountain, the bottom of a deep mine, in fact at any place of rest, and on
a rotating table in a laboratory or in a vehicle speeding along a tortuous highway.
In fact, the idea of invariance of the spring law under translations was adopted
by Hooke in 1675 in a proposal to use the spring to measure gravity. Thus, it is
commonly assumed that the law relating the internal force to the extension depends
only on the extension of the spring relative to itself, and it is not affected in any
manner by arbitrary superimposed rigid body motions of translation and rotation,
the latter altering only the relative direction of the spring force. This is an example
of the important classical principle of invariance of internal material response to
external superimposed rigid body motions, called, briefly, the principle of material
frame indifference. The principle** has been widely applied in works on material
response of deformable bodies, though often indirectly. In 1955, however, the
general principle of material frame indifference for deformable bodies was given
new motivation by Noll in its application to the constitutive theory of materials in
continuum mechanics. This rule is stated in Noll’s terms't as follows.

The principle of material frame indifference: The constitutive laws gov-
erning the internal interactions between the parts of a physical system do not
depend on whatever external frame of reference is used to describe them.

It is emphasized that the principle applies only to internal interactions be-
tween parts of a system, not to actions of the external world on the system and its
parts. It does not apply to actions on a body that arise, for example, from inertial
forces induced by the motion of the reference frame. These are frame dependent
actions of the external environment on the system, actions that arise as a conse-
quence of the noninertial nature of the reference frame, and which vanish only
when an inertial frame is used. The choice of the external frame of reference is a
matter of convenience. The internal interactions may be mechanical, gravitational,
thermodynamical, electromagnetic, for example. Here we apply the principle to
study the nature of the internal force between a pair of particles, an illustration due
to Noll.

** A history of this principle is traced in the remarkable treatise by Truesdell and Noll cited in the
References.

ft The presentation below, in somewhat different notation and without use of the language and math-
ematical rigor of finite dimensional spaces, parallels that due to W. Noll in unpublished articles
described in the References: I thank Professor Noll for providing a copy of his papers and for his
permission to use the example.
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5.18.3. The Law of Mutual Internal Action

Newton’s law of universal gravitational interaction between any two particles
in (5.46) postulates that the force exerted by one particle on another at any given
instant depends only on their positions, such that (i) the force is directed along
their common line; and (ii) the magnitude of the force depends only on the distance
between them. We are going to show, as Noll proved, that both conditions are
consequences of the principle of material frame indifference.

Consider a system of two particles P; and P, at a given fixed time ¢; and let
us assume that the mutual force F,; exerted on the particle P, by P; depends only
on the positions y and x of the two particles at that instant, so that

Fy= Fx, y). (5.106)

Of course, we consider only distinct material points: X # y. Now, after a change
of frame (5.105), or an equivalent superimposed rigid body motion of the system,
the particles appear at the positions X' = ~(x), y' = ~(y) and the force appears
to be rotated into F,; = QF,;, where Q is the orthogonal tensor in (5.105). Then
according to the principle of frame indifference, the same function ¥ should also
describe the dependence of the force on the positions X', y' after the change of
frame, so that QF; = F, = F(x', y'). This means that the function F must satisfy

QF(x,y) = Fx,y), (5.107)

for every change of frame (5.105) and for all points x and y € at the instant 7.

Letx, y be given, choose apoint at q € ¢ arbitrarily, and consider a pure trans-
lation for which Q = 1 and vy(x) = x + ctranslatesxtox'= . Theny = ¢c+y =
q + (y — x), and hence (5.107) reduces in a pure translation to

F(x,y) = F(q, q + (y — x)).

In particular, we may take q = 0, which is equivalent to our choosing ¢ = —x.
This relation, however, must hold regardless of what q may be chosen. Therefore,
we find that the function F must have the form

Fx,y) =Gy -x), (5.108)
for all x, y. Returning to (5.107) and using (5.108), we have
QG(y —x) = G(y —x), (5.109)

for all orthogonal Q and for all positions X, y.

Recalling from (5.105) thatAy/ —xX'= Q(y — x) holds for all rotations Q and for
all x, y, by (5.109), we have QG(y — x) = G(Q(y — x)), that is, withr =y — x,
the position vector of the particle P, relative to the particle Py,

QG(r) = G(Qr). (5.110)

This must hold for all vectors r and for all orthogonal transformations Q. Givenr,
(5.110) must hold, in particular, for all rotations Q about the axis r so that Qr =r.



82 Chapter 5

Then, by (5 ! 10), Qé(r) = G(r), and hence these Q leave G(r) unchanged. This
means that G(r) must be parallel to r, the axis of rotation. Hence, there exists a
scalar-valued function g(r) such that

G@r) =g, (5.111)
for all r. But the condition (5.110) requires that g(r)Qr = g(Qr)Qr, that is,
g(r) =g(Qr) for all orthogonal Q. (5.112)

Given r = re, where r = |r| = /T -1, introduce ¢ = Qe and note that
Qr = Qre = ré’. Then, by (5.112), g(re) = g(re’) for an arbitrary direction ¢’.
Thus, choose € = —etoobtain g(re) = g(—re). Therefore, the scalar-valued func-
tion g(r) must be an even function of r and independent of its direction. Hence,
g(r) is a scalar-valued function of r alone, defined by g(r) = h(r), and now (5.111)
becomes

G(r) = h(r)r. (5.113)
Recalling (5.108) and noting in (5.113) that r = y — X, we have
Fx, y) = h(ly — XDy — %). (5.114)

We thus find that the dependence of the force F5; in (5.106) on the positions
x and y must reduce to the specific form

Fa1 = h(r)r, (5.115)

wherer = |r|andr = re = y — xis the position vector of particle P, from P;. This
is the most general form of the law of mutual internal action that satisfies the prin-
ciple of material frame indifference. Moreover, from (5.114), f‘(y, X) = —f‘(x, y),
that is, F1, = —F,;. This is Newton’s third law of mutual action. Thus, the prin-
ciple of frame indifference applied to the internal force between two particles that
depends only on their positions, shows that their mutual internal force is a function
of the distance of their separation and is directed along their common line.

Exercise 5.7. Begin with (5.115) and show that (5.107) is satisfied for an
arbitrary change of frame (5.105). This will conclude the proof of Noll’s theo-
rem: The internal force (5.106) between two particles that depends only on their
positions is frame indifferent if and only if it has the form (5.115). (]

Newton’s law (5.46) for the mutual gravitational attraction of a pair of particles
is obtained from (5.115) with h(r) = —Gm m,/r>. Similarly, Coulomb’s law for
the electrostatic force between two particles with electrical charges g; and g3,
studied in the next chapter, follows from (5.115) with A(r) = kq,q,/r>, in which
k is a constant. The general rule (5.115) is also useful in characterizing the total
internal potential energy of a system of particles in Chapter 8.
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Appendix: Measure Units in Mechanics

In numerical examples, exercises, and problems where measure units are not

explicit, consistent measure units always are understood. It makes no difference

in

theoretical mechanics what measure units may be used to express numerical

results. But all countries throughout the world have agreed to adopt in scientific
work the International System of Units, called SI units. Some SI units used in
mechanics are listed in the Table 5.1.

Table 5.1. Systems of measure units

Measure Sl units Engineering units  English units
Mass kilogram (kg)  slug (Ib - sec?/ft) pound (1b,)
Length meter (m) feet (ft) feet (ft)
Time second (sec) second (sec) second (sec)
Force Newton (N) pound (1b) poundal (I1b;)

Universal conversion to the SI system, even at this date, is incomplete, and,

of course, many important earlier reference works employ other systems of units,
including the Engineering system which still enjoys wide use throughout the United
States and to a lesser extent in Great Britain. The English system, now largely
abandoned, is another scheme that has been used by engineers in these countries.
Table 5.1 identifies for these systems the measure units of force based on Newton’s
second law:

I N = 1 kg - m/sec?, 11b = 1 slug - ft/sec?, 11b; = 11b,, - ft/sec?.

The following conversion factors may be used to relate SI and engineering units:

1 N = 0.225 Ib, 1lm = 3.281 ft, 1 slug = 14.58 kg.
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The Engineering and the English units of mass are related by a dimensionless
conversion factor g, whose numerical value is equal to the standard value of the
acceleration of gravity at a specified point on the Earth. By definition, the mass of
a standard one pound body is 1 1b,, and its weightis 1 1b,thus W = 1 Ib= 1 slug-
ft/sec’ = mg, = 11b,, - g, ft/sec?. Then with g, = 32.2, say, 1 slug = 32.2 1b,,.
Similarly, the pound is defined as the unit of force that will impart to a 1 Ib,, an
acceleration equal to g,. Then with force measured in pounds (engineering units)
and mass measured in pounds mass (English units), Newton’s law would become
F = ma/g,. We may be thankful that this practice is no longer fashionable. Though
we shall have no need in this book to prefer one system over another, in numerical
work only Engineering and SI units are used.

Problems

It is essential that throughout the study of this text the student should work a variety of
problems in order to grow familiar with use of the notation, concepts, and definitions; to cultivate,
test, and expand one’s understanding of the subject matter; to learn the general methods of
mechanics; and to master various techniques of problem solving. Moreover, it is important that
the problems be approached in a spirit and manner similar to that expressed in the examples,
namely by the use of vector methods so far as may be reasonable and, in large measure, without
the aid of a computing device. Instances where use of a computer is desirable to promote practice
with some numerical calculations will be evident. In general, however, numerical values usually
will serve only to simplify an analysis and to lay bare the relevant aspects of the illustration.
Therefore, the majority of problems in this book have been constructed to avoid senseless use
of a computer so that the student’s skills with direct calculations and with manipulations of
analytical relations may be reinforced and sharpened to further develop the student’s ability to
handle fundamental aspects of analytic geometry, trigonometry, calculus, vector methods, and
differential equations, all essential to the modern demands of engineering practice.

5.1. Three particles of mass m; = 3 kg, ma = 2 kg, m3 =5 kg are initially located in
¢ ={F;it}atx; =3i—2j+Kkm, x, =2i~3km, x3 = —i+ 4Kk m, respectively, and their
corresponding initial velocities are given by v;=1i— 2k m/sec, v, = 2i — 3j m/sec, v3 =
—2k m/sec. Determine for the initial instant (a) the position and velocity of the center of mass
and (b) the momentum of the system.

5.2. Consider a system 8 = { P} of n particles P, with mass m,, and introduce the nor-
malized mass m; = m; /m(B) in which m(B) is the mass of the system. Let X, = x* + % and
X, denote the respective position vectors of Py from point O and from the center of mass C in
frame W = {F;e}. Then, by (5.5), the position vector of C from O is given by

n n
x*=;mkxk with ;mk=l. (P5.2a)

Lagrange observed that the location of the center of mass C of a system of particles is determined

uniquely by their relative positions, that is, by their mutual distances of separation d ;. He thus
posed the problem of finding C in terms of only these mutual distances. To see how this may be
done, first (a) prove Lagrange’s Lemma (1783):

% Z Z m;midy, = Z mdy, (P5.2b)
k=1

j=1 k=1
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where d; is the distance from C to the particle P; and dj; denotes the distance between the
particles with mass m; and my. Hint: Note that the vector %, — &; = x; — X; from m; to my
determines the squared distance djz.k = dkzj. (b) Apply (P5.2b) to prove Lagrange’s Theorem™ on
the center of mass (1783):

n n

d 1
g =Y md} - 5 Y mymdy,, (P5.2¢)
k=1 j=1 k=1

wherein d), and d¢ are the respective distances of the particle P, and of the center of mass C
from any specified point O. Hint: Determine ZZ=1 mkﬁf = Z:=1 my (R - £). The result follows
from here. Because O is an arbitrary point, it may be chosen at any of the particle locations so
that the distance of C from any three noncoplanar and noncoaxial particles can be found from
(P5.2c). Therefore, the location of C may be found when only the mutual distances of separation
of the particles are known.

5.3. Lagrange’s method described in the previous problem generally involves some rather
tedious calculations in its application, but it gives an easy solution in some cases. To grasp the
idea of the theorem, consider a system of two identical particles separated by a distance a. Apply
Lagrange’s theorem to find the center of mass, and describe carefully how its location is fixed.

5.4. Four identical particles are situated at the vertices of an equilateral pyramid with edge
lengths a and height 4. Find the center of mass C of the system (a) by use of Lagrange’s theorem
in Problem 5.2 and (b) by the usual method expressed in the normalized form (P5.2a). (c) Show
that C is the intersection point of the pyramid altitude lines at distance d¢ = 3h/4 from each
particle.

5.5. Find the center of mass of a homogeneous right circular cone of base radius » and
height 4. What is the mass of the cone?

Problem 5.6.

5.6. A homogeneous cylindrical wedge of radius r, length ¢, and central angle y is shown
in the figure. Determine the mass of the wedge, and find its center of mass in ¢ = {F;i}. Locate
the center of mass of a homogeneous half cylinder.

# A special case of Lagrange’s theorem applied to a molecular chain configuration of n atoms of
equal mass is presented by P. J. Flory, Statistical Mechanics of Chain Molecules, Hanser, New York,
pp- 5, 3834, 1988. See also M. E. Beatty, Lagrange’s theorem on the center of mass of a system of
particles, American Journal of Physics 40, 205-7 (1972).
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Problem 5.7.

5.7. One end of a connecting link AB is hinged at A to a gear G of radius 8 cm; the other
end is hinged at B to a slider block of mass m = 100 gm. The gear rolls on a fixed horizontal
rack. In 2 sec, the slider block moves from its initial rest position at C in frame ® = {O; i}
to the position shown in the diagram. During the interval of interest, the slider has acceleration
ap = 18Y/(x — 16)/3i cm/sec? in ®. Determine the momentum of the slider block at the instant
shown in the figure. What is the moment of momentum of B about points at O and A at the
instant of interest?

5.8. At a moment of interest fy, a particle P of mass 2 kg has the velocity v(P, tp) =
16i + 4j — 12k m/sec at the place X(P, tp) = 2i — j + 4k min frame ® = {F;i;}. (a) Determine
the momentum of P and find its moment about F at the time fy. (b) What is the instantaneous
moment of momentum of P about the point O atr = 2i — 3j + 6k m in ® when (i) O is fixed
in ® and (ii) O is moving in ® with the velocity vp = 4i—6j m/sec?

5.9. Water issuing from the nozzles of the garden sprinkler described in Problem 4.66,
Volume 1, causes it to turn with an angular velocity w(t) as shown. Compute the moment of
momentum about O of a fluid particle P of mass m as it exits the nozzle at E with a constant speed
v relative to the nozzle. What is the absolute time rate of change of the moment of momentum of P
at E?

Problem 5.10.

2 constant, counterclockwise angular speed of
ant-angular speed of 10 rad/sec, as indicated. A
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small slider block of mass 0.2 slug is moving along a wheel spoke toward the center O. At the
instant f, shown, the slider block is 1 ft from O and has a speed of 20 ft/sec that is increasing at
the rate of 10 ft/sec? relative to the flywheel frame ¢ = {O; i;}. (a) What is the linear momentum
of the block in the ground frame & = {F;I;} at #,? (b) What is its corresponding moment of
momentum about O? (c) Determine at ¢, the moment of momentum of the slider about F in ®.

5.11. For the data provided in Problem 5.1, determine for the initial instant the moment of
momentum of the system about F. What is the moment of momentum of the system about another
fixed point O at Xy = 3i — 2j + k m in ®? How is the moment about O of the momentum of
the system affected when O has the initial velocity vp = 4i — 13j + 6k m/sec?

5.12. Three particles of mass m, 2m, and 3m occupy the respective initial positions Xx; = 6j
ft, x, = 0, x3 = —2j ft, and they have the constant velocities v; = 6i + 3j, v, = 6i — 3j, v3 =
4i — 5§ + 2Kk (all in ft/sec), respectively, in frame ® = {O;i;}. Determine (a) the velocity of the
center of mass particle and (b) the momentum of the system. (c) Find the motion of the center of
mass particle as a function of time ¢, and describe its path. (d) What is the moment of momentum
of the system about O initially? (¢) What is the moment about O of the momentum of the center
of mass particle?

5.13. A loaded balloon of total weight W is falling vertically with a constant acceleration
a. Neglect wind effects and air resistance, but account for the buoyant force of the air, and find
the amount of ballast weight w that must be discarded to give the balloon an upward acceleration
—a.

5.14. Three particles of mass m, 2m, and 3m are stationary at the respective points (0, 0, 0),
(1,2, 3), and (3, 2, 1) in frame ® = {O; i, }. Find the resultant gravitational force exerted on the
particle of mass m.

5.15. A particle P of mass u is at the central point of a homogeneous, semicircular, thin
wire of radius b and mass density o per unit length. Determine the gravitational force exerted on
P by the wire.

Problem 5.16.

5.16. Two thin, homogeneous circular wires 98; and 9B, of radii a and b, respectively, are
positionedrinparallelplanesidistancedraparts The mass density of 9,, per unit length, is twice
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that of 3. A particle P of unit mass is situated as shown in the figure on the normal line O A
through their centers. (a) Apply (5.54d) to find the total gravitational force on P due to both
rings. (b) Show that the gravitational force due to 93, alone vanishes at the center of the ring at
O and at infinity, hence a maximum value of this force exists. Find the location b* of P where
the intensity of the gravitational force of %8, on P is greatest. (c) Repeat part (a) for the case
b = b*. What is the mass ratio m,/m, of the rings?

5.17. A thin, flat annular body 93 has an inner radius R;, an outer radius R,, and uniform
mass density o per unit of area. (a) What gravitational field strength does 93 produce at a
point P on the line normal to the plane of 43 through its center O, at distance X from O?
(b) Determine the field strength at O due to 3. (c) Show that for X >> R, the field strength
of A is g(X) = —Gm/ X*k, wherein m = m(), and hence in its gravitational attraction at a
sufficiently great distance X, the ring behaves like a particle in accordance with (5.47).

5.18. A particle P of mass B is situated at a distance X > a from the center, and along
the axis of a homogeneous thin rod of length 2a and mass density o per unit length. Find the
gravitational force acting on P due to the rod.

5.19. A particle P of mass 8 is located at a distance X on the center line perpendicular to
the axis of a homogeneous thin rod of mass m and length 24, both lying in the xz-plane. The
origin is at the center of the rod with its axis along k. Show that the gravitational force that the
rod exerts on P is

Gmp ;
XVXT+a?
5.20. A particle of mass m is placed at an external point on the axis of a homogeneous,
right circular cylinder at a distance « from one end. (Choose a frame with origin at the particle

and the cylinder axis as k.) The cylinder has radius R, length L, and mass M. Find the attractive
force it exerts on the particle.

F(P;X)=— (P5.19)

5.21. Determine the gravitational field strength at the central point Q of a homogeneous,
thin hemispherical shell of radius R and mass m. What is the field strength at Q for a complete
spherical shell?

5.22. Show that the gravitational field strength of a spherical Earth model with radius R
and mass density p = p(R) varies with the normal altitude A from its surface in accordance with
the relation

gR)

gX) = g(h) =m,

(P5.22)

where g(R) denotes the field strength at the surface.

5.23. A homogeneous thin rod R; of length 2b and mass M is placed with its axis along the
center line perpendicular to the axis of a similar rod R, of mass m and length 2a, in the xy-plane.
The center of R is at ¢ = ¢j from the center of R,. Determine the gravitational force that the
rod R, exerts on R;. (See Problem 5.19.) Tables of integrals may be needed.

5.24. A homogeneous, thin rod of length £ and mass m is positioned with its axis on the
line through the center O and perpendicular to the plane of a homogeneous, thin circular disk of
radius R and mass m. The end of the rod near the disk is at a = ak from point O. Find the total
gravitational force exerted on the rod by the disk. What gravitational force does the rod exert on
the disk?

5.25. The moon has a mean diameter of about 2160 miles, while that of the Earth is roughly
7910 miles. The ratio of the mass of the moon to that of the Earth is about 3/250. What is the
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acceleration of gravity on or near the surface of the moon? Compare your weight relative to the
Earth and the Moon.

5.26. Determine the gravitational force between two identical spheres of diameter d when
they touch each other. What is the ratio of the magnitude W, of their mutual attraction to the
magnitude W of the attractive force exerted on each of them by the Earth? Evaluate the result
for lead spheres with d = 2 ft and p = 22.5 slug/f’.

NSNS NSNS N AN
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5.27. A block of weight W, supports a smaller block of weight W, = %Wl constrained by
a light wire inclined at an angle 6, as shown. (a) Find the horizontal force P required to just start
the block of weight W; moving toward the right. (b) Find the tension in the cable after slip has
occurred. Assume that all surfaces have the same coefficients of static and dynamic friction, and
express the results in terms of tan 6.

Problem 5.28.

5.28. A homogeneous crate of mass m rests on a horizontal surface where the coefficient
of dynamic friction is v. (a) Find the magnitude of the inclined force P required to give the crate
a constant acceleration a in the direction shown. (b) Apply Euler’s second law (5.44) to find the
distance from the center of mass to the line of action of the normal surface reaction force N. Do
this in three ways. (i) Prove that My = 0 about a fixed point Q at the initial position of the center
of mass of the crate, and thus solve for the location of N. (ii) Repeat the analysis for the torque
M, = ho about a fixed point O in the contact plane at the initial position. (iii) Prove that the
total torque M¢ about the moving center of mass must vanish and thus locate the action line of
N. (c) What is the critical angle 6, for impending tip expressed in terms of assigned quantities
only?

5.29. The wedge body 93, in Fig 5.18a, page 53, is accelerated at a constant rate a toward the
right. The block 93, maintains contact with the plane throughout the motion. The gravitational
force acts downward in the figure. Show that 93, will slide down the inclined surface if a >
g tan(a' =), where tan' e = is the coefficient of static friction for the two surfaces and ¢ < a.
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Problem 5.30.

5.30. The figure shows a block B; of weight W, attached by an inextensible cable to a block
B, of weight W,. The weight ratio W;/ W, = 5/6. The cable is supported by a smooth ring, and
B, rests on a rough horizontal surface where i = 2/5 and v = 1/3. (a) Determine the critical
weight ratio W; / W, for which motion is imminent, and thus show that the system must move if
released from rest. (b) Find the acceleration a of the block B as a function of the weight ratio,
and determine its value for the assigned data.

5.31. A body P of mass m =5 slug has weight W =160j 1b relative to the planet ®.
(a) Suppose that P is atrest on a scale in a nonrotating frame ¢ = {O; ix} which has an acceleration
ap = 20j ft/sec? relative to ®. What is the weight of P apparent to an observer in ¢? What is
its apparent weight when ¢ has the opposite acceleration ag = —20j ft/sec? in ®? Find the
acceleration of ¢ for which the apparent weight of P vanishes. (b) Now suppose that P is
dropped from a state of rest in & so that the only force that acts on P is its weight relative to
®. Address the previous question for the observer in ¢. (c) Discuss the results and compare the
observations in ¢ with those in .

r

Problem 5.32.

5.32. During an interval of interest, the vertical motion of a load W is controlled by a
parabolic cam A BC that moves horizontally with a constant velocity v directed as shown. Draw
a free body diagram of the block. Determine the compressive force in the push rod BD in terms
of the load and the assigned quantities. Neglect friction.

5.33. A partin an aircraft engine consists of a 0.10 kg mass m attached by a 30 cm rod to the
propeller drive shaft. The shaft turns, as shown, with an angular velocity w = 100w(#)i rad/sec.
During a dive, the aircraft accelerates at 3g, and the rod is inclined at a fixed angle 8 = 30° in
the frame B = {O; i} fixed in the propeller shaft. Determine the total force acting on m.
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Problem 5.33.

5.34. Atesttube is held at a fixed angle 6 in a centrifuge spinning, as shown, with a constant
angular velocity w about a fixed vertical axis. A fluid particle of mass m, initially near the bottom
at F, is moving outward in the tube with a constant relative velocity v = vi. Identify the time
dependent variables, and determine as a function of time the total force that acts on P, referred
to the tube frame ¥ = {F;i}.

Problem 5.34.

5.35. A system of three forces F; = 6i+2j+4k N, F, = -2i+2j — 4k N, F3 = 5i —
3j+ 2k N act at the respective points x; = (1,0,0) m, x, = (0, 1,0) m, x3 = (0,0, 1) m in
frame ® = {Q;i;}. (a) Find the equipollent system with force FA = P and torque M"Q with
respect to Q. (b) Is F* - M, = 07 (c) Find the equations that describe the line of action of the
single force P. (d) Determine the center of force x7, with respect to the origin Q. (e) Determine
the center of force X}, with respect to the point O at x; in &, and confirm your result by showing
that x}, x P = M2 for the original system of forces.




6
Dynamics of a Particle

6.1. Introduction

We have seen that in an inertial reference frame, Euler’s first law (5.43) for
the motion of the center of mass “particle” of a rigid body 9, a fictitious material
point of mass m(98) that moves with the body, has the same form as Newton’s
second law (5.39) for the motion of a particle P of mass m(P). Hence, the motion
of any such “material point” or “particle” is governed by the Newton—Euler law
of motion, here written in its various forms as

F=p=ma=mv=mxX, 6.1)

in which m is the mass of the “particle,” p = mv, and X, v, and a are its respective
current position, velocity, and acceleration in an inertial reference frame.

Our objective now is to study a variety of physical applications and solutions
of the Newton—Euler equation of motion of a particle for various kinds of forces and
motions and thus demonstrate its predictive value. In some examples, the principal
body of interest may be small in some sense. An electron, a grain of sand, and
a fluid droplet are typical examples of infinitesimal or small bodies commonly
modeled as particles. Larger bodies like a ball, a pendulum bob, a crate, a person,
and an automobile are modeled as center of mass objects of rigid bodies. So long
as the rigid body has no rotation itself, there is no intrinsic difference between
these two models. In fact, in many such problems in which the body is replaced
by its center of mass “particle,” precise identification of the center of mass point is
not necessary; the mass distribution and the specific body geometry play no major
roles; and the actual points of application of the resultant forces that act on the body
are unimportant—they act on the particle. All of these virtually inconsequential
matters, however, have great importance later when rotational effects of a rigid
body are introduced. We recall, for example, the simple problem of a block sliding
down an inclined plane without tipping over. In this case, the body’s physical
andpgeometricalypropertiesythenlocationnof the points of application of forces
that act on it, and their moments were all very important to the description and

95
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analysis of the block’s motion. These sorts of underlying potential complications
are avoided when rotational effects are absent and a rigid body is modeled as a
particle.

The study of particle dynamics thus deals with the analysis of the vector
differential equation (6.1) for the motion of a particle and the forces that produce
it. When the motion, the velocity, or the acceleration is known either as a function
of time or as a function of a time dependent parameter, such as arc length along a
path, the force required to produce the motion is readily determined by (6.1). The
converse problem, to determine the motion of a particle under various kinds of
assigned forces, however, is more difficult, because it involves the integration of
(6.1). Moreover, the specification of some forces together with some components
of acceleration, velocity, or position leads to a mixed variety of problem types.
Some easy methods of integration useful in the analysis of (6.1) were studied in
earlier chapters. Additional methods and several new concepts will be introduced
as our study unfolds.

6.2. Component Forms of the Newton-Euler Law

We recall that the motion of a particle may be described in terms of different
coordinate systems that offer special advantages in applications; and, clearly, in
applications of (6.1), the force vector and the motion eventually must be repre-
sented in the same reference basis. For handy reference, the vector representations
of the Newton—Euler law in four familiar kinds of reference bases are provided
below.

Rectangular Cartesian reference frame ® = {O; 1, j, k}: The acceleration
is given by (1.12) and (6.1) may be written as
F = Fii+ F,j+ F:k = m(%i + yj + ZKk). (6.2)
Intrinsic reference frame iy = {P;t, n, b}: Equation (1.71) provides the
acceleration and (6.1) becomes
F = F,t+ F,n = m(s5t + «5°n). (6.3)

Notice that there can be no intrinsic force component Fj, normal to the osculating
plane. Hence, if the motion is constrained to a plane, the total force component
perpendicular to the plane must vanish. This is a property of every plane motion.

Cylindrical reference frame ¢ = {O;e,, €4, e;}: The Newton-Euler law
(6.1) and the acceleration vector in (4.60) yield the representation

. 1d )
F=Fe + Fsep+Fe,=m |:(f —rée, + ;5(7‘205)% + Zez] . (6.4)
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Spherical reference frame ¢ = {O;e,, €y, €5}: The acceleration compo-
nents are defined in (4.71). Hence, (6.1) becomes

F = Fe, + Fpeg + Fpey = m[(’r’ — rf% — r¢*sin’ 9)e,

1 . , 1 ) .
+{ - i(r26?) —rd*sinfcos6 |es + | - i(rqu sin @) + r¢6 cos 9) €y |.
rdt rdt
6.5)

The left-hand expressions in (6.2) through (6.5) define the respective compo-
nent forms of the total force. The force components are then related to the accel-
eration components by equating their corresponding scalar components in these
expressions. The intrinsic force components F;, and F, in (6.3), for example, are
thus related to the intrinsic acceleration components by F, = m§, F, = mis*. The
procedure is the same for the others. The component equations are called the scalar
equations of motion. In general, however, we first formulate each problem in its
vector form, and afterwards identify the corresponding scalar equations of motion.

It is not always necessary to introduce a specific component form of (6.1).
Sometimes it is possible to solve a problem in direct vector form without mention
of any components, but more often than not this approach proves tedious and
impractical; therefore, the component forms find wider use in applications.

6.3. Some Introductory Examples and Additional Concepts

We shall begin with several introductory examples that employ the foregoing
representations in some problems where the motion is essentially known and cer-
tain force conditions are to be determined. Some earlier concepts are reviewed, and
some new concepts are introduced as the examples progress. The importance of
the Newton—Euler law in its generic form (5.34) is underscored in characterizing
the motion of a relativistic particle.

6.3.1. Some Applications in a Rectangular Cartesian Reference Frame

Three problems that use a rectangular Cartesian reference frame are solved.
The first is an easy application of (6.1) in which the acceleration is known and
a certain force is to be found. The example demonstrates the importance of our
distinguishing the inertial reference frame in applications of the Newton—Euler
law. The second exercise illustrates an application in which the acceleration of one
bodyisknownyandiaCoulombiconditionfor relative sliding of another contacting
body is to be determined. The results will be used in the third example to illustrate
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(a) Free Body of the
Control Device

Figure 6.1. Motion in an accelerating reference frame.

the converse problem in which the forces are known and information about the
motion is to be obtained. The form of the law in (6.2) is evident in the applica-
tions.

Example 6.1. A rocket propelled test vehicle V in Fig. 6.1 is used to study
man’s ability to function at high rates of acceleration and deceleration.* (a) Suppose
the vehicle is accelerating at 5g along a straight track in the inertial frame ® =
{F;I}. What force does the operator need to apply to a 2 Ib control device D
to impart to its center of mass a relative acceleration apy = 16i + 80j ft/sec? in
the vehicle frame ¢ = {V;i;}? (b) Compare the result with the force required to
perform the same task when the vehicle has a uniform motion in ®. Assume that
the local acceleration of gravity is 32 ft/sec?.

* The example brings to mind the daring exploits of U.S. Air Force Colonel John P. Stapp, MD, Ph.D.,
the biomedical engineering pioneer, who in December 1947, at Edwards (then Muroc) Air Force
Base, California, became the first human to ride a rocket propelled test sled to study human tolerance
to severe decelerations of the sort sustained in the crash of an automobile or aircraft. Based on Stapp’s
research studies, appropriate safety harnesses, helmets, restraints, and other essential equipment could
be developed. Stapp demonstrated firsthand that a properly harnessed and protected driver, pilot, or
astronaut could indeed survive an incredible impact, the wind blast, and deceleration of ejection
from an aircraft traveling at supersonic speeds at great altitudes, or the large acceleration of a rocket
lift-off, himself having withstood test sled decelerations of 25 to more than 40 times the acceleration
of gravity. With new facilities at the Holloman Air Force Base, New Mexico, where subsequently he
set up and directed his biomedical engineering and crash research programs, in 1954 Stapp rode the
rocket vehicle “Sonic Wind” from 632 mph to a dead stop in 1.4 sec, suffering only minor injuries
in a deceleration of more than 40 gs! A 2200 Ib (1000 kg) automobile smashing into a brick wall
at 50 mph (=80 kmph) would subject its driver to roughly the same impulsive shock. Other human
volunteers in his program tested the security of safety belts in decelerations that exceeded 25 gs.
See Time, The Weekly Newsmagazine, Volume 66, No. 11, September 12, (1955), 80-2, 85-6, 88.
Stapp’s adventures, his sense of humor, and his generosity to others are portrayed here. Dr. Stapp, then
dubbed “the fastest man on earth,” died at his New Mexico home on November 13, 1999, at age 89. 1
thank Professor O. W. Dillon, who during the early 1950s was stationed at Holloman when Stapp was
directing these research programs, and upon reading the manuscript reminded me of Stapp’s heroic
feats.
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Solution of (a). We begin with the problem kinematics. The absolute ac-
celeration of the vehicle in the inertial frame ® is given as ayr = 5gI, where
g = 32 ft/sec’. Thus, recalling the simple relative acceleration rule (4.50) and
the assigned center of mass acceleration apy = 16i + 80j ft/sec? of D in the ve-
hicle frame ¢ in which i, = I;, we determine the absolute acceleration of D in
frame &:

apr = apy + ayr = 1761 + 80J ft/sec?. (6.62)

This completes the kinematical analysis.

We now turn to the force analysis. The free body diagram of D is shown in
Fig. 6.1a. As usual, we shall assume that the contact force due to the surrounding
air is self-equilibrated to zero. Then the total force F(D, t) acting on D is the sum
of its weight W and the force F,, exerted by the operator. Hence, the Newton—Euler
law (6.1) applied to D in the inertial frame ® yields

F(D,t) = W+F,, =m(D)apr, (6.6b)

in which W = —mgJ = —2J lb and m(D) = 1/16 slug. The kinematics in (6.6a)
is now coupled with the force analysis in (6.6b) to yield the solution

F, = 111+ 7] Ib. (6.6¢)

Solution of (b). We note from (6.6¢) that |F,,| = /170 ~ 13.04 Ib. We wish
to compare this result with the force needed to perform the same task when the
vehicle has a uniform motion in ®. To impart the same acceleration to the device
when the vehicle has a constant velocity or may be at rest in & so that now
ayr = 0and apr = apy, we find from (6.6b) that the operator must apply a force
F,, = mapy — W =1+ 7] Ib. Hence, |F,,| = 54/2 ~ 7.07 Ib. Therefore, if the
Newton-Euler law were applied in the accelerating reference frame, the operator
would conclude incorrectly that a force of about 7 1b is needed, while the task
actually requires nearly twice that. We thus learn that when the operator works in
the accelerating vehicle, nearly twice the effort must be expended to perform the
assigned task. 0

This example demonstrates the important role of the inertial reference frame
in applications of the Newton—Euler law. The next problem concerns the prediction
of relative sliding of a body in contact with an accelerating surface.

Example 6.2. A truck carrying a crated load W is moving down a 15° grade
in Fig. 6.2. The driver suddenly applies the brakes and the truck decelerates at
the steady rate of 4 ft/sec? along its straight path. The coefficient of static friction
between the crate and the trailer bed is 4 = 0.3. Determine for the given values
of the parameters'whether the'crate will'slide or remain stationary relative to the
trailer.
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(a) Free Body Diagram
of the Crate

Figure 6.2. Relative motion of a crate on an accelerating truck.

Solution. We shall assume initially that the crate does not slide relative to
the truck and seek a Coulomb condition sufficient to assure this. If this condition
fails for the assigned data, we then know that the crate will slide. This strategy will
enable us to decide the issue.

To investigate the motion of the crate C, we first draw its free body diagram
in Fig. 6.2a. To simplify matters, all contact forces due to the Earth’s atmosphere,
including air flow effects due to the truck’s motion and other wind effects, are
neglected. Then the total force F(C, t) acting on C is approximated by its weight
W and the resultant normal and tangential contact forces N and f exerted by the
trailer bed. The equation of motion (6.1) for C becomes

F(C,t) =W+ f+ N =macp, (6.7a)

whereinm = m(C) is the total mass of C and acr is its total rectilinear acceleration
in the inertial ground frame & = {F’;1i, j, k}. The vectors in (6.7a) are given by

W = W(sini— cos 6j), f=—fi N = Nj, acr = acl, (6.7b)
and hence
(Wsinf — )i+ (N — Wcos0)j = maci. (6.7¢)
Therefore, the scalar equations of motion for the crate are
mac = Wsinf — f, N — Wcos6 =0. (6.7d)

When a¢ is known, equations (6.7d) determine the unknown forces N and f. Thus,
with W = mg,

N = W cos#, f = W(sin6 —ac/g). (6.7¢)

Recalling the strategy proposedrearlier, we note that the crate will not slip if
the frictional force f is smaller than its critical static Coulomb value (5.70), that
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is, provided that f < f. = uN. (See also (5.72).) In this case, because the crate
is assumed not to slip, its acceleration is the same as that of the truck, namely,
arr = ari. Thus, with the aid of (6.7¢) and ac = ar, the Coulomb no slip criterion
is

sinf — %T < peosf. 6.79)
This conclusion is independent of the weight, the size, and the shape of the crate.
Actually, however, we have tacitly assumed in (6.7f) that the crate geometry is
consistent with the no tip condition, which imposes limitations on the crate geom-
etry. The reader may confirm, for example, that for a rectangular box of height 24
and a square cross section of side 2b, the crate will not topple before slip occurs,
if it occurs at all, provided that b/ h > p.

The crate will not slide if (6.7f) holds for the assigned data; otherwise, it
will. We now test (6.7f) for the assigned values ar = —4 ft/sec?, g = 32.2 ft/sec?,
u=0.3, and 6 = 15°. The terms on the left side of (6.7f) yield the value
[ = 0.383 while those on right give r = 0.290. Since [ > r, (6.7f) does not
hold, and the crate will slide. For an alternative approach, the reader may show
that the critical acceleration ar of the truck for which sliding of the crate is

imminent is given by ar = g(sinf — pcos@) = —1 ft/sec?, the condition for
equality in (6.7f). Since |ar| = 4 ft/sec? > |ar|, the crate will slide, as concluded
previously. -0

The simple relative motion of the crate on the truck bed is examined next in
illustration of the converse problem in which the forces are known and the velocity
and the motion of the crate are to be found.

Example 6.3. The coefficient of dynamic friction between the crate and the
trailer bed is v = 0.25. What is the rectilinear acceleration of the crate relative to
the trailer? Determine the distance on the bed traveled by the crate after 1 sec and
after 2 sec.

Solution. The crate C has a rectilinear acceleration acr relative to the truck
T given by

acr = acr —arr, (6.8a)

wherein arr = ari is the known absolute acceleration of the truck in the inertial
frame ®. We need to find acF, the total acceleration of the crate in ®.

The vector equation for the sliding motion of the crate is the same as (6.7a),
and hence the scalar equations of motion for the crate in & are given in (6.7d).
But this time, because the crate is sliding on the trailer bed, the Coulomb frictional
force is given by (5.71). (See also (5.73).) Thus, with the last of (6.7d), we have
f = fi=vN =vWcos0;anduseof this relation in the first equation in (6.7d)
yields ac. Thatis,acr = aci = g(sin® — v cos 0)i. Hence, (6.8a) delivers the first



102 Chapter 6

of the desired results:
acr = acri = [g(sin@ — vcos ) — arli. (6.8b)

Therefore, the rectilinear acceleration of the crate relative to the truck is inde-
pendent of the weight, the size, and shape of the crate, consistent with the no tip
condition.

The relative acceleration (6.8b) is a constant vector. With ay = —4 ft/sec?,
g=322 ft/sec?, v = 0.25, and 6 = 15°, we find act = 4.56i ft/sec?. To deter-
mine the distance traveled by the crate on the bed, we first integrate the differ-
ential equation §ver /8t = acr with the initial condition ve7(0) = 0 to obtain
Ver = acrt = 4.56ti. Hence, the relative speed of C is $(t) = 4.56¢; and with
5(0) = 0, the distance traveled by the crate is s(¢) = 2.28¢. Therefore, after 1 sec
the crate has moved a distance s(1) = 2.28 ft. After 2 secs, s(2) = 9.12 ft, and the
crate, regardless of its physical features, slams into the cab, initially only 9 ft away
in Fig. 6.2. g

6.3.2. Intrinsic Equation of Motion for a Relativistic Particle

In this section, the intrinsic equation of motion for a relativistic particle whose
“effective” mass varies with its speed is derived, and the result is applied to examine
the nature of a purely normal force that acts on the particle in its motion along a
smooth curved path. The Newton—Euler law in the form (6.1), however, cannot be
used in problems where the mass of the particle is variable; so we return to the
basic law (5.34).

In relativistic mechanics, the relativistic mass m of a particle P in a frame ¢
varies with its speed § relative to ® in accordance with the rule

m=ymy=—eoe  with f=-. 6.9)
1—p? ¢

The constant m,, the invariant mass of the particle, is called the rest mass of P in
® and the constant c is the speed of light in a vacuum. The relativistic mass m is
not the intrinsic mass of P. Rather, the concept of mass is retained as an invariant,
intrinsic property of an object, and hence m is identified as the invariant mass of
the object, the same for all observers and for all times. The principle of conservation
of mass applies to my, not to m. Although nowadays it is unfashionable to refer to
m as the relativistic mass, it is convenient in this text to retain the symbolic relation

m = ymg defined by (6.9) and continue to call it the relativistic mass.
These semantics aside, the relativistic momentum of P is defined by p =
mv = ymgyV, where v = dx/dt is the usual time derivative; and the rule governing
the motion of P is retained in the general Newtonian form F = dp/dt stated in
(5:34)=Althoughmchangeswithi$yitiseasy to show that F = 0 holds if and only
if the motion is uniform in ®. This conforms with the condition set by the first
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law, i.e. F = 0 &= a = 0. Otherwise, in view of (6.9), the second law becomes
dm
F= —V. 6.10
ma+ l (6.10)
Now, with the aid of (6.9) and v = §t = ¢ft, we find

dm _ moppv__ mp? ot
a (A-pyR 1o

Therefore, use of this result and (1.71) for the intrinsic acceleration in (6.10) leads
to the intrinsic equation of motion for a relativistic particle:

F=m<1_sﬁ2t+/cszn>. 6.11)
Whens <« csothat 8 < 1,(6.9) reduces approximately to m = mg and we recover
from (6.11) the classical, nonrelativistic intrinsic equation in (6.3). It follows from
(6.11) that the total force F acting on a particle may be normal to its path, hence
perpendicular to its velocity vector v = $t, if and only if its speed is constant. (See
Problem 1.5, Volume 1.) This is illustrated below.

Example 6.4. A particle P, free from gravitational force, experiences a rel-
ativistic motion in a smooth, spatially curved tube. Find the force exerted on the
particle by the tube and characterize the tube geometry in order that the force may
have a constant magnitude.

Solution. The reader’s free body diagram of P will show that the total force
on P is simply the normal reaction force exerted by the smooth tube. Hence, use
of F = N = Nnin (6.11) yields the desired information:

N =mks? and §=0. (6.12)

Indeed, the second of these equations shows that the particle speed must be
constant; and hence the relativistic mass in (6.9) must be constant too. Therefore,
the first relation in (6.12) shows that in a smooth motion with constant speed, the
normal reaction force intensity at each point along the path is proportional to the
curvature and is directed toward the center of curvature. Clearly, N = 0 if and
only if the motion is uniform, in which case the tube must be straight. In general, N
may be constant if and only if the tube has a constant curvature. A cylindrical helix
is a familiar example of a space curve having a constant curvature. (See Example
1.14.) If the motion is a plane motion, the tube must be circular. The following
further example is left for the reader. O

Exercise 6:1::AvparticlesPsmovesron a smooth surface S so that the only
force on P is the normal surface reaction force R. Prove that the principal normal
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vector n must be perpendicular to S at each point of the trajectory of P and hence
the path is a geodesic on S. (See Example 1.16 in Volume 1.) g

The results for the motion of a relativistic particle in a smooth tube hold
independently of relativistic considerations when 8 <« 1. It is shown later that
the same behavior occurs when an electrically charged particle, relativistic or not,
moves in a uniform magnetic field.

6.3.3. Electric and Magnetic Forces on a Charged Particle

Two basic laws that describe electric and magnetic body forces are introduced.
Afterwards, the trajectory of an electrically charged particle moving in a steady
and uniform magnetic field is described.

First, consider the mutual force of attraction or repulsion between two parti-
cles with electric charges ¢ and g; respectively situated at X; and X in an arbitrar-
ily assigned reference frame so that the distance between them is r = |X; — Xj|.
Let Fy; denote the force exerted on ¢, by ¢, and write e for the unit vector
directed from g, the source of the action, toward q,. The force exerted on ¢,

by ¢ is equal and oppositely directed so that Fy; = —F},. Experiments support
the following principle governing the mutual interaction of electrically charged
particles.

Coulomb’s law of electrostatics: Between any two charged particles in the
world, there exists a mutual electrostatic force which is directly proportional to the
product of the charges, inversely proportional to the square of the distance between
them, and directed along their common line in the sense of mutual repulsion or
attraction according as the charges are of the same or opposite kind, respectively;
that is,

The value of the positive constant & depends on the nature of the medium in
which the charges are placed. The physical dimensions of k are fixed by (6.13):
[k] = [FL*Q7?], where [Q] = [¢] denotes the physical dimension of electric
charge. The metric measure unit of ¢ is named the coulomb. Experiments on
charges in vacuum show that k = 9 x 10° N - m?*/coulomb?. Notice that only the
relative position vector r = re of g; from ¢, is important.

The rule (6.13) is a particular example of Noll’s general rule (5.115) governing
the internal force between any pair of particles, in this case charged particles;
and the formal similarity of (6.13) with Newton’s law of gravitation (5.46) is
evident. We thus introduce the parallel idea of an electric field & that arises from
the existence of a charged particle situated in space. And when a particle of charge
gisplacedimthisspaceyitexperiencesaforce of attraction or repulsion determined
by (6.13). An electric field &is said to exist throughout space due to a particle of
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positive charge ¢, called the source of the electric field, whenever a force is felt
by another charged “test” particle placed anywhere in &. Thus, the electric field
strength E at the place X due to g is defined by

k
mxy:f?axx (6.14)

where e is the unit vector directed from g( toward the field point X at r from gy.
Hence, the electric force F, that acts on a particle P of charge g at the place X is
a body force given by

F.(P;X) = q(P)E(X). (6.15)

The same rule holds when the charged particle moves in the electrostatic field &.

The electric body force is in the direction of E (repulsive) when g is positive
and opposite to E (attractive) when ¢ is negative. Hence, the action of this force
alone will move a charged particle in a straight line in the direction of E if ¢ > 0,
oppositely if g < 0. The principle of conservation of electric charge asserts that
the total charge Q for a closed system of n charges g, is a constant equal to their
algebraic sum: Q = Y} _, gx. Thus, in a manner parallel to that demonstrated for a
gravitational field, the resultant electric force on a particle of charge ¢ placed in the
electric field of a system of charged particles or, similarly, in the field of a charged
continuum is given by the fundamental law (6.15). In general, then, the electric
force acting on a particle of charge ¢ having a motion X(g, ¢) in an electrostatic
field of strength E(X) is given by (6.15).

A magnetic field of strength B arises in a similar way from the existence in
space of some kind of magnetic object. When a charged particle moves with a
velocity v in a time independent magnetic field B, it experiences a body force F,,,
the magnetic force, given by

F,, = qv x B. (6.16)

This equation shows that the magnetic body force F,, on a charged particle
is always perpendicular to v, and hence to the particle’s path. Under the action of
this force alone the particle, from (6.12), must move with a constant speed vy, say;
so, the magnitude of its momentum |p| = muy is constant.

Example 6.5. Consider a relativistic charged particle of rest mass my mov-
ing in a constant magnetic field of strength B. (a) Prove that the charge moves
in a circular helix, a curve of constant curvature, and hence F,, has a constant
magnitude. (b) Derive the equation of the path for a plane motion perpendicular
to a constant magnetic field B = BKk.

Solution;ofi(a)s To:determine thertrajectory of a particle of charge g moving
1n a magnetic field of constant strength B, we recall Newton’s law in (5.34) and
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consider the relation

4B =2 .B_¥,.B=0 (6.172)
a P T T Im B =D '
wherein (6.16) is the total force on g. Therefore, the component of the momentum

in the direction of B is constant:
p:-B =mv-B = C,aconstant. (6.17b)

Since the magnitudes of p and B are constant, (6.17b) implies that the angle
between the fixed axis of B and the tangent to the space curve along which ¢ moves
is constant everywhere along the path. Consequently, as described in Example
1.14, the path is a circular helix, a space curve of constant curvature; therefore,
|F.| = quoBsin(v, B) is constant. Conversely, it follows from (6.16) that if F,,
has a constant magnitude, sin (v, B) is constant and hence the path is a circular
helix.

The initial velocity vy may be considered arbitrary. If the velocity is initially
perpendicular to B, then, by (6.17b), p - B = 0 always, and the path is a circle in
the plane perpendicular to B. If the initial velocity vy is parallel to B, the constant
force F,, = 0; the motion is uniform and the path is a straight line along the axis
of B. The circle and the line are degenerate kinds of helices. In summary, the
trajectory of a charged particle which is given an arbitrary initial velocity in a
constant magnetic field is a circular helix.

Solution of (b). The path of a charge ¢ in a plane motion perpendicular to
the constant vector B is a circle. To describe this circle, we apply Newton’s law
in (6.16) to write dp/dt = d(gx x B)/dt. Integration yieldsp—gqx x B=A, a
constant vector. Let B = Bk and consider a plane motion perpendicular to B, so
thatx =xi+ yj. Thenp = (A; + ¢By)i + (A2 — g Bx)j,and withp - p = |p|* =
m?*v?, aconstant, this yields the equation of a circular orbit of radius R = mvy/q B:

A 2 A 2
( - q—;) + (y + q—é) = R2. (6.17¢)

We thus find with (6.9) that a charged relativistic particle in a uniform
magnetic field moves on a circular orbit with angular speed @ = vy/R =

qgB/m = (qB/mg)y/1 — B2. This is known as the circular cyclotron fre-
quency. d

When both fields (6.15) and (6.16) are present, the total electromagnetic force,
known as the Lorentz force, is
F.+F, =qE +gv xB. (6.18)

Many-interesting effects.may-be.produced by an electromagnetic field. In some
cases of physical interest an electromagnetic force is used to accelerate atomic
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Figure 6.3. Relative equilibrium of passengers in an amusement park centrifuge.

particles in a cyclotron to speeds nearly as great as the speed of light. In these ap-
plications the electromagnetic force on the particle is considerably greater than the
usual gravitational force, which is ignored. In further applications presented below,
unless explicitly stated otherwise, it will be assumed that the speed of the particle
is small compared with the speed of light so that the classical, Newton—Euler form
(6.1) of the equation of motion for a particle or center of mass object is appropriate.

6.3.4. Fun at the Amusement Park

Our final illustration in this section concerns a design analysis of an amuse-
ment park ride to assess the safety of its occupants during its rotational motion. The
cylindrical coordinate representation (6.4) for the equation of motion is illustrated.

Example 6.6. An amusement park ride shown in Fig. 6.3 consists of a 20 ft
diameter cylindrical room that turns about its axis. People stand against the rough
cylindrical wall. After the room has reached a certain angular speed, the floor
drops from under the riders. What must be the angular speed of the room to assure
that a person will not slide on the wall? The design coefficient of static friction is
w =104

Solution. To assess the safe angular speed design, we seek a no-slip Coulomb
condition sufficient to assure that a rider does not slide on the wall of the rotating
room. The free body diagram of a rider represented as a center of mass object
PrissshownriniFigr6:3anTherrider’ssweight is W = —Wk, and N = —Ne, and
f = fses + f:k are the normal and the tangential frictional forces exerted by the
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wall. Thus, the total force F on a rider in a cylindrical frame that turns with the
room is

F(P,tH) =N+f+W =—Ne, + fye, + (f, — Wk. (6.19a)

For the safety of a rider, we require that the rider remain at rest relative to the
wall. Then by (6.4) in which ¢ = w, or by (4.48) in which w ¢ = wk, it follows
that map = —mrw?e,. Equating this to the force in (6.19a), we obtain the scalar
equations of motion

N = mro?, W= f, fs=0. (6.19b)

'In the steady rotation of the room, no circumferential component f, of the
frictional force is exerted on the rider by the wall; and the second of these rela-
tions shows that the rider will not slide down the wall if the Coulomb condition
W = f, < f. = uN holds. Therefore, with the first equation in (6.19b), the design
criterion for safety of the riders is given by umrw? > W. That is,

w> |, (6.19¢)
ru

equality holding when slip is imminent; the smallest value w* = /g/r u being the
critical angular speed of the room. The result is independent of the weight of the
rider; so all persons, fat or thin, will stay on the wall, provided that their coefficient
of friction with the wall is not less than the design value chosen for [i.

For the given conditions r = 10 ft and pu = 0.4, the critical angular speed is
w* = 2.84 rad/sec, which is about 27 rpm. Thus, to secure the safety of the riders,
the room must spin at a rate greater than 27 rpm. g

6.3.5. Formulation of the Particle Dynamics Problem

The foregoing examples show that when information about the motion is
known, various questions involving the nature of the applied forces may be ad-
dressed. Some unanticipated physical conclusions are also pointed out, and the
predictive value of the classical principles of mechanics is demonstrated. A review
of the methods used in these examples reveals a fairly orderly arrangement of steps
followed in the formulation and in the solution procedure applied to the particle
dynamics problem; namely,

1. To begin, identify and express the data and the unknown quantities in
mathematical form, and ask the key question: what relations connect the
given data to the information to be found? Write these down and decide
upon an initial problem attack strategy; but be prepared to modify your
strategy as the attack advances and additional data is revealed.

2. To continue, construct a free body diagram that shows all of the properly
directedscontactsforcesyandsbodysforces that act on the free body in an
appropriate reference frame.



Dynamics of a Particle 109

3. Write down the total, F, of all forces identified in the free body diagram
and express these various forces by their vector component representations
in the chosen reference basis.

4. Determine the absolute acceleration a of the particle in the inertial frame
but referred to the reference basis used above.

5. Assemble the results of steps 3 and 4 into the vector differential equation
of motion: F = ma.

6. Equate the corresponding scalar components to obtain the scalar equations
of motion, and proceed to solve these equations subject to the assigned
data. Other laws appropriate to the problem, such as Newton’s third law or
Coulomb’s laws, should be recalled and included here.

This basic procedural model is encountered repeatedly throughout our work.
The outlined program, however, is not rigid. The examples suggest that sometimes
itis useful, or simply a matter of personal preference, to begin with the kinematics
in step 4 and then advance to the formulation of the force relations described in
steps 2 and 3. Sometimes the vector equation in step 5, as shown in Example
6.5, page 105, may be solved directly without decomposing the vectors into their
scalar components, eliminating steps 3 and 6. The student must be prepared to
modify this schedule as other methods are introduced below. But the primary
organizational step 1 always should be considered first and revisited as the solution
unfolds.

With these ideas in mind, we shall begin the study of a variety of situations
in which certain forces are prescribed functions and information concerning the
motion and other forces is to be determined. This will require integration of the
vector equation of motion (6.1). Some new forces of nature will be introduced
along the way. We begin with some familiar examples.

6.4. Analysis of Motion for Time Dependent and Constant Forces

Problems of the motion of a particle under time varying and constant forces
are readily solved by the method of separation of variables, a familiar approach
used often in earlier examples. The formal solution of problems in this class, first
presented as kinematical problems in Chapter 1, is reviewed next. The results are
then applied in some elementary examples.

6.4.1. Motion under a Time Varying Force

Let us consider a total force F = F(P, t) acting on a particle P in an in-
ertial-frame; givenrasrasspecifiedsfunction of time. Then (6.1) yields a(P, t) =
F(P, t)/m(P), a known function of time. Hence, with dv = ad?t, this differential
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equation is readily integrated in direct vector form to obtain the velocity of P:
1
v(P,t)=— /F(P, t)dt + ¢y, (6.20)
m

in which ¢; is a constant vector of integration.
A second integration with dx = vdt gives the motion of P:

x(P,t) = fv(P, t)dt + ¢, (6.21)

wherein ¢, is another constant vector of integration. The constants ¢; and ¢, are
fixed by the assigned initial data. The reader will notice that (6.20) and (6.21) are
respectively equivalent to the kinematical equations (1.24) and (1.23). A typical
example follows. (See also Example 1.7 in Volume 1.)

Example 6.7. A particle P in an inertial reference frame has an initial ve-
locity vy at the place Xy, and subsequently moves under the influence of a force
that is proportional to the time and acts in a fixed direction e. Find the position and
velocity of P at time ¢.

Solution. The force on P is given by F(P, t) = kte, where k is a constant
and e is a constant unit vector. Use of this relation in (6.1) and integration of the
result as shown in (6.20) with the initial value v(P, 0) = vy yields the velocity
v(P, 1) = kt?>/2me + v,. With the initial value x(P, 0) = xo, a second integra-
tion described by (6.21) yields the motion x(P, t) = kt>/6me + vot + Xo. Let the
reader show that if P starts at the origin with velocity vo = voj and the force
acts in the direction e = i, the path of P is a cubic parabola x = cy?>. Identify the
constant c. O

6.4.2. Motion under a Constant Force

In the special case when F(P, t) = Fj is a constant force, the acceleration
a(P,t) = Fy/m is also a constant vector. Hence, (6.20) reduces to

F
v(P,t) = 2t + v (6.22)
m

with ¢; = v(P, 0) = vy. Integration of (6.22) in accordance with (6.21) and use of
¢, = x(P, 0) = xq delivers the motion

F
x(P, 1) = ﬁﬁ 4 Vot + Xo. (6.23)

These elementary formulas are applied below to study projectile motion and
the motion of a particle that falls from rest relative to the Earth. To simplify matters,
thespinof the-Earth-and-aeredynamic-and;atmospheric drag effects are neglected.
Then the two problems are similar because they occur under the same constant
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gravitational force Fy = W = mg, while only the initial conditions are different.
Any motion under gravity alone is called free fall.

6.4.2.1. Galileo’s Principle for Free Fall of a Particle

The initial conditions in the free fall problem of a particle P released from
rest at the origin are vo = 0, xo = 0, and (6.22) and (6.23) thus yield the familiar
elementary equations for the free fall motion, velocity, and acceleration of the
particle:

1
X(P,t) = 5gtz, v(P,t)=gt, a(P,t)=g. (6.24)

The results (6.24) are independent of the mass or any other property of the
object, and hence, for the same circumstances, we learn that all bodies fall with
the same speed along the plumb line of g. This is known as Galileo’s principle.
Accordingly, if two balls, one made of cast iron and the other of wood, were simul-
taneously released from the summit of the Leaning Tower of Pisa, an experiment
allegedT to have been done in 1590 by the famous Italian scientist, Galileo Galilei
(1564-1642), then together they would fall, and together they would strike the
ground. Of course, common experience with feathers and stones contradicts this
principle. But this happens because the physical attributes of the feather are not
accurately modeled by the assumptions—specifically, the primary assumption of
negligible air resistance which is plainly essential to our physical interpretation of
the theoretical results. On the contrary, experiments conducted on bodies falling
in a vacuum, including feathers and stones, lend support to Galileo’s principle,
which otherwise is especially altered by air resistance and to a lesser extent by the
rotation of the Earth, effects that are investigated later.

6.4.2.2. Motion of a Relativistic Particle under Constant Force

Many elementary but interesting problems concern the motion of a particle
when the total force is either a constant vector or an elementary function of time. It
is not intended, however, that any of the foregoing formulas should be memorized.
On the contrary, the examples serve to review procedures used often in Volume 1 to
obtain solutions to similar problems by the easy method of separation of variables.
While the same basic procedure may be applied to investigate the motion of a
relativistic particle, for example, the formulas derived above cannot be used at all.
This is illustrated next. Afterwards, the results are compared with those in (6.22)
and (6.23) when xg = 0, vo = 0.

f See Cooper’s study described in the References.
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Example 6.8. A relativistic particle P, initially at rest at the origin in frame ¥/,
is moving along a straight line under a constant force Fy. Determine the relativistic
speed and the distance traveled by P as functions of time.

Solution. The equation of motion for the relativistic particle is given by
(5.34) in which F(P, t) = F; is a constant force and (6.9) is to be used. Hence,
separation of the variables and integration of Fodt = d(mv) = d(ymv), with the
initial values v(P, 0) = 0 and y = 1, yields mv = Fyt. Thus, recalling (6.9) and
noting that v = vt and Fy = Fyt are parallel vectors, we have only one nontrivial
component equation: mov/(1 — v?/c?)!/? = Fyt. This scalar equation yields the
rectilinear, relativistic speed

v(P,t) = ———— with k= —. (6.25a)

Introducing v = § into (6.25a), separating the variables, and integrating ds = vdt
with the initial value s(0) = 0, we obtain the rectilinear distance traveled by P:

s(P,1) = %(\/ 1+ k)2 — 1), (6.25b)

Noticein (6.25a) that v/c < 1forallt,and v/c — 1ast — oo;thatis, under

a constant force, the relativistic particle speed cannot exceed the speed of light c.

This result is quite different from the corresponding speed v = Fyt/m described

by (6.22) for a Newtonian particle of mass m = my initially at rest and subject to

a constant force Fy; in this case v — oo with ¢. If mqc is large compared with Fyt

so that k¢t < 1, then (6.25a) and (6.25b) reduce approximately to
0 2

F 1 F
o(P, 1) = ckt = —t, s(P, 1) = =ckt®> = —1*.
mo 2

6.25
2m0 ( C)

These are the Newtonian formulas described by (6.22) and (6.23) for the corre-
sponding rectilinear motion of a particle of mass my initially at rest at the origin
and acted upon by a constant force Fy. In the present relativistic approxima-
tion, however, these results are valid for only a sufficiently small time for which
vice=kt L1 O

6.4.2.3. Elements of Projectile Motion

Equations (6.22) and (6.23) are applied next in two examples involving pro-
jectile motion and the simultaneous rectilinear or free fall motion of another target
body. Afterwards, a fascinating technological application of a controlled projec-
tile motion is studied. In addition to earlier assumptions, frictional effects are
ignored.

Example.6.9.-Percy-Panther-is.snoozing in an open-top artillery truck when
he senses the presence of the mischievous Arnold Aardvark lurking beneath. He
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Free Body of the Shell

Figure 6.4. Projectile motion in an inertial reference frame without friction.

quietly releases the handbrake to escape down the hill inclined at an angle .
Arnold Aardvark having quietly rigged a remote trigger, immediately fires the
gun, launching a shell of mass m straight up from the truck, as shown in Fig. 6.4.
The gun has a muzzle velocity vy, and the total mass of the truck and its strange
driver is M. Determine the time and the location at which the shell impacts the
ground, and find the location of Percy Panther at that time.

Solution. First, we determine the motion of the shell S, whose free body
diagram is shown in Fig. 6.4. The total force acting on § is its weight Wy = mg.
Thus, in the inertial frame ® = {F;i;} fixed in the ground, the constant force in
(6.22) and (6.23) is Fg = W = mg(sin ai— cos zj); and with vy = vgjand xo = 0
initially, we obtain, in evident notation,

vs(?) = voj + gt(sin wi— cos «f), (6.26a)

1 1
xs(t) = Egt2 sinai + (vot - Egt2 cos a) j- (6.26b)

Let the reader derive these results starting from (6.1), determine the maximum
height reached by S, and show that its trajectory is a parabola.

The shell returns to the ground after a time t* when xs(t*) = ri in Fig. 6.4,
and hence by (6.26b),

%2 2v0

sina, = .
gcosa

1
r=3st (6.26¢)

Theresultsareindependentof themassorany other property of the shell. Elimina-
tion of ¢* from the first of (6.26¢) yields the impact range r in terms of the muzzle
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speed vy and the angle « that the gun makes with the vertical axis of g:

202t
r= 20 20% (6.264)
gcosa
Now consider the free body diagram of the truck in Fig. 6.4. The total force
F7 acting on the truck is its total weight Wy and the normal surface reaction
force N. Without frictional effects, (6.1) becomes

Fr =N+ Wr = Nj+ Mg(sinai— cos «j) = Mar. (6.26¢)

Since the truck accelerates along the i direction, N = Mg cos« and a; = g sini.
Hence, two easy integrations with vp = 0 and xo = 0 yield

vr(t) = gt sinai, (6.26f)

1
xr(t) = Egﬁ sin o (6.262)

Comparison of the i components in (6.26b) and (6.26g) parallel to the truck’s
motion reveals that the shell at each instant is directly above the truck, now coasting
toward the ultimate surprise! But a few tenths of a second before the impending
catastrophe, Percy Panther spots the converging shell and slams on the brakes. The
shell explodes violently in front of the truck, destroying it. Through the smoky haze,
Arnold Aardvark spies the black, whisker-singed and disheveled driver crawling
safely away to seek revenge another day. a

Example 6.10. Arnold Aardvark is sunbathing on a lookout platform at xo =
ai + bj in the frame ® = {O;i;} when he spots Percy Panther at O preparing to
fire an artillery gun pointed directly toward the platform, as shown in Fig. 6.5.
The gun has a muzzle velocity vy and the tower is well within its range 7. At the
moment the gun is fired, Arnold Aardvark, sensing impending danger, grabs his
umbrella, steps through a hole in the platform, and falls freely in pursuit of safety
toward the ground. Determine the distance d that separates Arnold Aardvark and
the shell at the instant #* when it crosses his line of fall.

Solution. The free body diagrams of the shell S and Arnold Aardvark B are
shown in Fig. 6.5, in which Wy = mgsg and Wp = m g denote their respective
weights. Their free fall equations of motion, in evident notation, are

FB =mpg = mpap, Fs =msg = mgag. (6273)

Therefore, B and S have the same constant, free fall acceleration, azg = ag = g,
but their respective initial conditions differ. Integration of this equation, i.e. dvg =
dvg, with vg(0) = 0 and vs(0) = vy, the muzzle velocity of the gun, gives

Vg = Vs — Vo with vy = vo(cos i + sin j). (6.27b)
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Figure 6.5. An unusual lesson on projectile motion.

A second integration with xg(0) = x¢ and x5(0) = 0 yields the relative position
vector D = xp—xg of B from § at any time #:

D =xy — vt with Xy = ai + bj. (6.27¢)

At the instant t* when the shell crosses Arnold Aardvark’s line of es-
cape x =a < r, D =dj. Thus, with vy given in (6.27b), (6.27c) yields dj =
(a — vot* cos B)i + (b — vgt* sin B)j. The i component determines ¢*, and the j
component yields

d=b-atanfp (6.27d)

for the distance separating Arnold Aardvark and the unyielding shell at #*. But
Percy Panther had directed the gun on the line toward the platform with tan 8 =
b/a; so, Arnold Aardvark is headed straight toward an unpleasant surprise at the
instant ¢*! But a few moments before disaster strikes, he spies the approaching
shell and quickly fixes the crook-handled umbrella to a tower beam, instantly
arresting his fall. The shell explodes violently beneath him, destroying the tower.
Arnold Aardvark, his snout scorched and twisted, escapes the assault with renewed
mischief in mind.

So long as the tower is within the gun’s range, the result is independent of
the muzzle speed and of the masses of the objects involved; it depends only on the
initial coordinates of B and the angle of elevation of the gun. Explain why Arnold
Aardvarkslivinginaworld-where this;solution is meaningful, was wise not to have
used the umbrella as a parachute. (]
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Figure 6.6. Schema of the IBM ink jet printing process. Copyright 1977 by International Business Machines
Corporation; reprinted by permission.

6.4.2.4. Ink Jet Printing Technology

The same projectile ideas together with the basic law (6.15) for the elec-
tric force on a charged particle have a fascinating application in ink jet printing
technology. An ink jet printer, illustrated schematically in Fig. 6.6, produces an im-
age from tiny, charged spherical droplets of electrically conductive ink fired from a
drop generating nozzle, approximately 1/1000 in. diameter, at the rate of 117,000
drops per second. The conductive droplets pass between charging electrodes where
they are selectively charged electrostatically by command from programmed elec-
tronic control circuits that describe the image characters in terms of charge-no
charge language. Moving at roughly 40 mph initially, the charged droplets pass
through a constant electric field that directs them onto the paper. As vertical scan-
ning occurs, an electromechanical control mechanism moves the printer carriage
parallel to the paper at a constant speed of 7.7 in./sec. In this way, the ink jet printer
quietly composes characters of high quality at a rate of about 80 characters per
second, a full line of type across a standard page in about 1 sec. Of course, these
operating rates will vary with printer design and evolving technology.

To understand its fundamental working principle, we shall determine the
relative motion of a droplet P of mass m and charge ¢ having an initial velocity
v relative to the printer carriage. Since the carriage has a uniform velocity v,
as indicated in Fig. 6.6, the reference frame ¢ = {O;i;} fixed in the charger at
O is an inertial frame in which Newton’s law may be applied. For simplicity,
aerodynamic.drag-and-wake.effects;and:the influence of electric repulsive forces
between the charged droplets are neglected. Then, as shown in the free body
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diagram in Fig. 6.6a, the total force F(P,t) = F, + W acting on a drop P is
due to its weight W = —mgj and the constant applied electric force F, = gE =
qEj. Hence, F(P,t) = (g E — mg)j is a constant force. From (6.1) and the initial
condition vy = vpi, we obtain the velocity of the drop relative to the printer carriage
whose constant velocity is v¢ = vck:

V(P,t) = voi + (cE — g)tj with c=gq/m. (6.28a)

With xy = 0 initially, integration of (6.28a) yields the motion of a droplet relative
to the printer carriage:

1
x(P, 1) = voti + E(CE - 9)t%j. (6.28b)

Hence, the path of the droplet relative to the carriage is a parabola

y(x) = iz(cE — g)x2. (6.28¢)
2vg
Let us imagine for simplicity that the deflection plates of length d extend
from the origin at the charger to the paper surface, as suggested in Fig. 6.6. Then
(6.28¢) holds for 0 < x < d. (See Problem 6.22.) Therefore, at x = d, the droplet
deflection or scan height 2 = y(d) at the paper surface is determined by

d2
h=_—(E—g). (6.28d)
2v;

The result (6.28d) shows that when an electrostatically charged drop enters
the uniform electric field, the electric force alters its free fall trajectory and de-
flects it vertically by an amount proportional to its charge. An uncharged drop
is collected in a gutter that returns the unused ink to its reservoir as shown in
Fig. 6.6. A charged drop impacts the paper. Alphabetic or any other characters,
shown schematically in Fig. 6.6, are formed by directing the ink dots onto the
paper in patterns determined by the printer electronics. The decision to charge
or not to charge is made automatically 117,000 times each second. The formula
(6.28d) shows that the character height is inversely proportional to the square of
the stream speed vy which is controlled by the pump pressure. The printer controls
the character height automatically by its pump control circuit. In this way, the
ink jet printer is able to rapidly generate various characters of high quality. Some
interesting style effects may be produced by varying the carriage rate.

A remarkable stroboscopic microphotograph of droplets of ink emerging from
an ink jet printer is reproduced* in Fig. 6.7. A jet of ink that originated in the drop
generator to the right has dissociated into spherical droplets. The lower line of drops

! This extraordinary photograph by Mr. Carl Lindberg was adapted from the color photograph on the
cover of the Number 1 issue of the 1977 IBM Journal of Research and Development. Copyright 1977
by International Business Machines Corporation; reprinted by permission. In Fig. 6.7, however, the
intensity of the droplets has been enhanced for greater clarity.
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Figure 6.7. Stroboscopic microphotograph of ink drops in a jet printer. Copyright 1977 by International
Business Machines Corporation; reprinted by permission.

were not charged, so these are moving toward the ink gutter to the left. The larger
gaps between these uncharged drops are the vacated positions formerly occupied
by the field deflected, charged drops that are traveling on the trajectories above.

The same ink jet technique was first applied in a similar way in the construc-
tion of a strip chart recorder, a high speed device for recording rapidly changing
electrical signals on a moving paper chart. The disintegrating fluid jet concept has
found other applications that include the sorting of cells in blood samples and
the atomization of fuels for combustion. The deflection of a charged particle by
an electric field also is used to control the motion of an electron stream in an
oscilloscope and to produce images on a television screen or a computer monitor.
Technological advances in electronic imaging, however, have led to the replace-
ment of cathode ray tube devices by liquid crystal and high resolution plasma
display systems whose basic operating principles are altogether different, and far
more complex. The practical use of liquid crystal technology, for example, is ev-
ident in its increasingly diverse applications to computer and television screens,
computer games, digital cameras, calculators, cellular phones, digital clocks and
watches, microwave ovens, and a great host of other consumer and military elec-
tronic products.

6.5. Motion under Velocity Dependent Force

istance have been ignored. Realistically,
eric drag forces that slow it down and
ircraft, a sky diver, and a raindrop; and



Dynamics of a Particle 119

water behaves similarly to retard the motion of swimmers, water skiers, and ships.
Experience in such situations shows that the retarding force varies with the speed
of the body.

For objects moving slowly through the air, the resistance is roughly propor-
tional to the speed; but this simple rule breaks down at speeds typical of low
velocity projectiles for which the air resistance varies roughly with the square of
the speed. For an aircraft or a rocket whose velocity may approach the speed of
sound, the drag force increases in proportion to some higher power of the speed,
and so on. The retarding force is also a function of the density of air and hence
varies with the altitude. Of course, aerodynamic design plays an important role
too. These complications aside, we may gain physical insight into the nature of air
and water resistance by study of special, ideal models.

6.5.1. Stokes’s Law of Resistance

The simplest model used to study the nature of phenomena arising from drag
effects of air and water on an object moving at low speeds is described by Stokes’s
law: The drag force Fp on a particle is oppositely directed and proportional to its
velocity v:

Fp = —cv. (6.29)

The constant ¢ > 01is called the drag or damping coefficient. This model is applied
later to investigate the motion of a projectile and of a particle falling with air
resistance. First, however, we formulate the problem for a more general model for
which the drag force is an unspecified function of the speed.

6.5.2. Formulation of the Resistance Problem

Figure 6.8 shows a particle P moving in the vertical plane of frame ¢ =
{0; i}, under a total force F(P, t) = W + Fp consisting of its weight W = mg

A

i
|1
Y
w
t
0 i (a) Free Body Diagram

Figure 6.8. Motion of a particle under a drag force Fp.
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and the drag force Fp = —R(v)t, where R(v) is an unspecified, positive-valued
function of the particle speed v. The equation of motion, by (6.1), is
mg — R(v)t = ma(P, t). (6.30)

Two cases are considered—rectilinear motion and plane motion.

6.5.2.1. Rectilinear Motion with Resistance

Let us consider a vertical rectilinear motion in the direction of g = gt in Fig.
6.8a. Then with a(P, t) = vt, (6.30) becomes

v=g-— % = F(v). 6.31)

Integration of (6.31) yields the travel time as a function of the particle velocity in
the resisting medium,

dv

t= f o) + co, (6.32)

where ¢ is a constant. Theoretically, this equation will yield v(¢) = ds/dt which
may be solved to find the distance s(¢) traveled in time ¢. Alternatively, using
v = vdv/ds in (6.31), we find the distance traveled as a function of the speed,

vdv
N =fm +C1, (633)

in which ¢; is another constant of integration. In principle, the integrals in (6.32)

and (6.33) can be computed when the resistance function R(v) is specified in (6.31).
The following example illustrates these ideas for Stokes’s linear rule (6.29).

Example 6.11. Falling body with air resistance. A particle of mass m, a
raindrop for example, falls from rest through the atmosphere. Neglect the Earth’s
motion, wind effects, and the buoyant force of air, and adopt Stokes’s law to
model the air resistance. Determine as functions of time the rectilinear speed and
the distance traveled by the particle.

Solution. The solution may be read from the foregoing results in which the
drag force is modeled by Stokes’s law (6.29) sothat F, = —R(v)t = — cvt. Hence,
use of R(v) = cv in (6.31) gives

d
d—j:g—vaF(v) with vs%.
For the initial condition v(0) = 0, we find by (6.32)

v __dv 1 Vv
= =——log|{l——;
0 §— VU v g

(6.34a)
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v Uniform Motion: W+F_=0

—— 't

Figure 6.9. Graph of the normalized speed versus the normalized time for the vertical motion of a particle
falling with resistance proportional to its speed.

s0, the rectilinear speed of the particle in its fall from rest is

V() = veo(l —e™¥)  with vy = (6.34b)

< |og

In consequence, as t — 00, the particle speed v approaches a constant value vo, =
g/v = W/c, named the terminal speed. When the particle achieves its terminal
speed, its weight is balanced by the drag force so that cvs, = W, and the particle
continues to fall without further acceleration.

These facts are illustrated in Fig. 6.9. Equation (6.34b) shows that the rate at
which v(t) changes is governed by the coefficient of dynamic viscosity v = c/m,
which has the physical dimensions [v] = [F/MV] = [T~']. Thus, at the in-
stantz = v™!, by (6.34b), v(v™!) = vo(1 — e71) & 0.632v4,. Therefore, the speed
reaches 63.2% of the terminal speed in the time t = v~1, called the retardation
time. The straight line of slope 1 in Fig. 6.9 shows that this also is the time at
which the speed would reach the terminal value if it had continued to change at
its initial constant rate a(0) = g, without air resistance. As the particle’s speed
approaches the terminal speed of its ultimate uniform motion shown by the hori-
zontal asymptote, the weight W = Wt is balanced by the drag force Fp — Fy, =
—CVUxot.

Finally, with v = ds/dt and the initial condition s(0) = 0, (6.34b) yields the
distance through which the particle falls in time ¢:

s(t) = voo/ (1 —e™")dt = voot — v%o(l —e . (6.34¢)
0

Hence, the distance traveled in the retardation time interval is s(1/v) = v /(ve) &
0.368v0/v. The result (6.34c) also may be read from (6.33).

The reader may verify that in the absence of air resistance when v — 0 the
limit solutions of (6:34b)rand (6:34c) are the elementary solutions (6.24). Now
consider the case when the viscosity v is small. First, recall the power series
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expansion of e* about z = 0:

2 2

e=1+z+ = +3'+ (6.34d)

Then use of (6.34d) in (6.34b) and (6.34c) yields, to the first order in v, an approx-
imate solution for the case of small air resistance:

v v

=g (1-51),  so=3¢(1-31). (6.34¢)
When v — 0, we again recover (6.24) for which air resistance is
absent. O

6.5.2.2. Plane Motion with Resistance

Now, let us consider the plane motion of a particle in frame ¢ = {O;1, j},
as shown in Fig. 6.8. With t = v/v = x/vi+ y/vj and g = —gj in (6.30), the
component equation (6.2) yields

R R
X =—ﬂfc, y=—-g— ﬂy. (6.35)
my my
These equations are difficult to handle in this general form. For resistance governed
by Stokes’s law (6.29), however, the ratio R(v)/mv = c¢/m is constant; and (6.35)
simplifies to

: c
X =-vx, y=—g—vy with v=— (6.36)
m

Example 6.12. Projectile motion with air resistance. A projectile S of mass
m is fired from a gun with muzzle speed vy at an angle B with the horizontal
plane. Neglect the Earth’s motion and wind effects and assume that air resistance
is governed by Stokes’s law. Determine the projectile’s motion as a function of
time.

Solution. The equations of motion with air resistance governed by Stokes’s
law are given in (6.36). To find the motion x(S, t), we first integrate the system
(6.36) to obtain v(S, t). Use of the initial condition vq = vp(cos Bi + sin Bj) yields

/* dx ) fY' dy .
-0 = —VI, - = 1l
vocos B X v, sin B gt+vy

These deliver the projectile’s velocity components as functions of time:

% = (vg cos Be™™, y = —§ + (vo sin B + E) e . (6.37a)
v
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Figure 6.10. Projectile motion with air resistance.

Then integration of (6.37a) with the initial condition xy = 0 yields the motion of
the projectile as a function of time:

x(t) = = cfsﬂ (1—e™), (6.37b)
(@) = ~2 + ! (Uo sin B8 + 5) 1—e™). (6.37¢)
Vv Vv 1%

Let us imagine that the projectile is fired from a hilltop into a wide ravine,
as shown in Fig. 6.10. Then, as ¢t — 00, in the absence of impact, (6.37a) gives
X — 0 and y — —g/v. Hence, the projectile attains the terminal speed v,, =
g/v at which its weight is balanced by air resistance; and (6.37b) and (6.37¢c)
show that the projectile approaches asymptotically, the vertical range line at ro, =
lim,_, o x(t) = (vo cos B)/v in Fig. 6.10. In the absence of air resistance, the range
for the same situation would grow indefinitely with the width of the ravine. The
simple Stokes model thus provides a more realistic picture of projectile motion
with air resistance that limits its range. g

6.5.2.3. The Millikan Oil Drop Experiment

When oil is sprayed in fine droplets from an atomizer, the droplets become
electrostatically.chargedypresumablydueto frictional effects. The charge is usually
negative, which means that the drops have acquired one or more excess electrons.
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Figure 6.11. Schematic of the Millikan oil drop experiment.

This fact was exploited in 1909 by the famous American physicist Robert A.
Millikan in a classic experiment designed to measure accurately the charge of an
individual electron. Millikan’s experimental method, its relation to our study of
air resistance, and his remarkable result’ are discussed next.

A schematic of the oil drop test is shown in Fig. 6.11. Charged oil droplets,
about a thousandth of a millimeter in diameter, are ejected from an atomizer at the
top of the apparatus. A few drops escape through a small hole into an illuminated
electric field E directed as shown. A lighted drop is seen in a telescope as a tiny,
bright particle of mass m and negative electric charge —g falling slowly under
the influence of its weight Wy, the electric force F,, the drag force Fp, and the
buoyant force Fp of the air, as shown in the free body drawing in Fig. 6.11; so,
the total force on the droplet is F(P,t) = F, + Fp + Fz + W,. The use of oil
eliminates effects due to fluid evaporation, so only the drag force varies with time.
Independent tests confirmed that the charge on the drops does not affect the air
resistance to its motion, and because the particle’s rate of fall is small, Stokes’s
law of resistance is applicable.

The intensity of the electric field, hence the electric force F, = —gE on a
negatively charged drop, is adjusted until the droplet becomes stationary, spatially
suspended in equilibrium between the field plates. In this case, Fp = 0 and the
equilibrium equation yields

F.+W;+Fpg=—gE+W=0. (6.38a)

The effective weight W = W, + Fp of a droplet in air depends on the mass density

§ In 1923, Robert A. Millikan was awarded the Nobel Prize for physics, principally for his work
identifying precisely the unit of electric charge. Nearly 25 years subsequent to his death in 1953,
however, he was strongly criticized for his treatment of students and others, and for his mishandling
of the data. See the balanced account by D. Goodstein (among the references under Millikan) for
the rest of the story. The importance that Millikan placed on his amended form of Stokes’s law is
underscored in this article. Also, it should be mentioned that besides frictional effects that induce
negative charges on the droplets, the electric arc lamp is a source of ionization radiation of the space
between the horizontal capacitor plates thatalsoinduces positive charges on an atom of an oil droplet,
so the droplets are sometimes referred to as ions.
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of the oil and of the sealed air as well as on the size of the drop. The mass densities
are known, but the diameters of the drops are too small to be accurately measured
directly with the telescope. Millikan devised an ingenious, indirect method for
finding the size of the drops.

When the electric field is turned off, the drop accelerates in its fall until its
terminal speed is reached. This happens when the drag force given by Stokes’s
rule balances the effective weight of the drop so that the particle is in a state
of relative equilibrium at its constant terminal speed. Thus, the equation of the
uniform motion yields

F,+W=0, (6.38b)

in which Fo, = —cvnt is the air resistance at the terminal speed voo. By timing
the distance traveled at the constant slow rate of fall of the drop, Millikan mea-
sured the terminal speed and applied the result (6.38b) to compute the droplet size.
Then the drag coefficient ¢, which depends on the size of the drop and the known
viscosity of air, could be evaluated by a separate formula derived by Stokes from
hydrodynamic theory. But Millikan found that Stokes’s formula, due to the small
size of the drops compared with the mean free path of a gas molecule, was inaccu-
rate, and he provided an empirical correction to account for the discrepancy. With
this adjustment in mind, ¢ and v, may be considered known. Thus, in effect, the
charge on the drop is determined by eliminating W between (6.38a) and (6.38b)
to obtain —gE = F . Clearly, the error in Stokes’s formula for the calculation of
¢ does not affect the basic linear nature of the rule (6.29), and hence the droplet
charge is determined by
Clso
=% (6.38¢c)
Millikan and his co-workers found in many measurements the remarkable
result that every droplet had a charge q equal to an integral multiple of a number
e = 1.6019 x 107! coulomb, the basic amount of negative charge of one electron.
Thus, Millikan’s conclusive experimental result that

q = ne, n=1273,..., (6.38d)

showed that electric charge exists in nature only in integral units of magnitude e.

The procedure to obtain the data on one particular droplet sometimes took
hours. At times, when interrupted while working on a drop, Millikan would put it
into balance with the field and leave it. On one occasion he went home to dinner
and returned after more than an hour to find the droplet only slightly displaced
from where he had left it. At another time, Millikan realized he would not finish
his experiment in time to attend dinner at home with invited guests, so he phoned
Mrs. Millikan to explain that “T have watched an ion for an hour and a half and have
tosfinishsthe-job; -but-insisted-that:shesand their guests go ahead with dinner. He
learned later that Mrs. Millikan advised their guests that Robert would be delayed
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because he had “washed and ironed for an hour and a half and had to finish the
job”

Measurement of e had been done earlier, but never with the accuracy achieved
by Millikan’s suspended oil drop test. He was studying the fundamental building
block out of which, it is now believed, all electrical charges in the universe are
composed, always in integral multiples of the basic unit electron charge e. The
entire basis for the measurement of its magnitude rested on application of Stokes’s
law to the terminal speed of spherical droplets of oil in air. The apparatus was
a device for catching and essentially seeing an individual electron riding on a
drop of oil. Millikan recalled later in his autobiography this exciting observational
experience: “He who has seen that experiment has in effect seen the electron.”

Additional examples of particle motion with air resistance are provided in
Problems 6.23 through 6.27. We continue with a new topic.

6.6. An Important Differential Equation

Many physical systems are governed by the second order differential equation
ii(t) + riu(t) = h(), (6.39)

for a scalar function u(t). Herein r is a real or complex constant and A(t) is a
specified function of the independent variable t. We are going to encounter lots
of applications in which one or more of the scalar equations of motion are of the
type (6.39); so it is most helpful to understand the physical nature of its solution
in general terms.

The solution of (6.39) when r = 0 describes a motion under a time varying
force. This case was studied in Section 6.4.1, page 109; therefore, we shall assume
that r # 0. In the general case, we recall from the theory of differential equations
that the solution of (6.39) is given by the sum

ut) =upy(t) +up(), (6.40)

in which up(¢), called the homogeneous solution, is the general solution of the
related homogeneous equation

iy +riuy =0, (6.41)
and u p(¢) is a particular solution that satisfies (6.39):
iip+riup = h). (6.42)

6.6.1. General Solution of the Homogeneous Equation

‘The,generalsolution;of the;homegeneous equation is obtained by considera-
tion of a trial function u7 = Ce* in which A and C are constants. This function
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satisfies (6.41) for each root of the characteristic equation A* + r? = 0, namely,
A = =ir in which i = +/—1, so both uz(t) = Cye'"* and uz(t) = Coe""" are so-
lutions of (6.41). Hence, the general solution of the homogeneous equation that
contains two arbitrary integration constants C; and C; is given by the sum of these
independent solutions:

up(t) = C1e'"" + Cre™'. (6.43)

The homogeneous solution (6.43) is also known as the complementary function.

6.6.2. Particular Solution of the General Equation

The hardest part of our problem is to find a particular solution of (6.42)
for a given function A(t). Standard methods are available that may be applied
to find one. The method of variation of parameters, for example, is a powerful
procedure applicable to equations with variable or constant coefficients, but the
complementary function must be known in advance. This presents no difficulty
in the present problem for which it can be shown that this method leads to the
following general relation for a particular solution of (6.42):

I 1¢4
up(t) = f o) [¢h077) — 0] dr, (6.44)
Al — A
wherein A = (A1, A,) are distinct roots of the characteristic equation. In the present
case A = %ir yields A, = —A; = —ir. In evaluation of the indefinite integral in

(6.44) arbitrary constants are omitted; they have no importance in the particular
solution. The solution (6.44) also may be verified by its substitution into (6.42).
(See Problems 6.28 and 6.29.) In many problems of physical interest, use of the
formal relation (6.44) to compute the particular solution may be avoided. For
the kinds of problems we shall encounter ahead, it is much easier to generate a
particular solution on an ad hoc basis.

Example 6.13. Let us consider a particular solution for the case when h(t) is
a linear function of ¢, namely,

h(t) = c + bt, (6.45a)

for constants b and c¢. Then because 4(t) = 0, we see that a particular solution that
satisfies (6.42) is

h(t

up(t) = Lz) =r"*(c+br). (6.45b)

r
In this instance iip = 0. Indeed, a particular solution of (6.42) has the prop-
erty iip(t) = 0 if and only if up(¢) is a linear function like (6.45b), and hence
whensand-only-when-(t)sissthe-linear-function (6.45a). Therefore, in accordance
with (6.40), the general solution of (6.39) for this case is given by the sum of
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(6.43) and (6.45b):
u(t) = Ce™ + Cre™ " + r (¢ + bt). (6.45¢)

The solution for other special functions A () will be considered as the need arises.

6.6.3. Summary of the General Solution

In summary, we find with (6.43), (6.44), and (6.40) that the general solution
of the differential equation (6.39) may be written as

ut) = Cie"”" + Coe ™" + up(t), (6.46)
where the particular solution is defined formally by
t
h , .
up(t) = / -2@ [¢707" — e =D] dr. (6.47)
ir

This is a convenient means of representing a particular solution of (6.39) for an
arbitrary smooth function i(#). Remember, however, that in many cases of practical
interest, depending on the nature of h(¢), a particular solution of (6.39) may be
obtained by simpler ad hoc methods.

6.6.4. Physical Character of the Solution

Now let us consider two important cases of physical interest. In the first
instance we suppose that r = p is a real constant so that 7> = p? > 0. This leads
to a trigonometric type solution. In the second case, we take r = igq, a pure complex
constant, so that 2 = —g? < 0. This leads to an exponential type solution which
is then expressed in terms of hyperbolic functions. As a consequence, the physical
nature of these two classes of solutions of (6.39) is quite different. (See Problem
6.33.)

6.6.4.1. Trigonometric Solution: r = p, a real constant

Equation (6.39) for this case becomes
ii(t) + p*u(r) = h(r), p real. (6.48)

Of course, the general solution of this equation has precisely the form (6.46)
with r replaced by p. But the complex exponential solution, convenient in some
problems, suffers the undesirable disadvantage that the constants C; and C, are
complex quantities. It proves more convenient, therefore, to transform this solution
to its trigonometric form by use of Euler’s identity

e='P' = cos pt + i sin pt. (6.49)
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Then, with » = p, the general solution (6.43) of the homogeneous equation (6.41),
namely,

iig + pPug =0, p real, (6.50)
may be written as
ug(t) = Asin pt + B cos pt, (6.51)

wherein A and B are two real constants of integration. Thus, the complementary
function has an oscillatory character typical of trigonometric functions.

Substitution of (6.49) into (6.47), with r = p, leads to the following expres-
sion for the particular solution of (6.48):

up(t) = / ? sin p(t — t)dr. (6.52)

The general solution of (6.48) is the sum of (6.51) and (6.52). Formally,
u(t) = Asin pt + B cos pt + up(t). (6.53)

The trigonometric functions in (6.51) and (6.53) have well-known periodic behav-
ior whose physical relevance is discussed further in applications ahead.

Exercise 6.2. Let Cy = a; +iby, C; = ay +ib,, and set r = p in (6.43).
Use Euler’s identity and show that the homogeneous solution (6.43) is real-valued
when and only when b; + b, = 0 and a; — a; = 0. Determine in these terms the
real constants in (6.51). O

6.6.4.2. Hyperbolic Solution: r = iq, a complex constant

The equation (6.39) for this case becomes
ii(t) — q*u(t) = h(1), q real. (6.54)

It is important to recognize that the principal difference between (6.54) and (6.48)
is merely the sign of the second term. This results in significantly different kinds
of solutions. The general solution of (6.54) is given by (6.46) with r replaced by
iq. We thus obtain

t
h
u(t) = Cre 4" + Cre?' + f 2(—;) (979 — 740" dr. (6.55)

Notice that the homogeneous solution, the first two terms in (6.55), has an expo-
nential character. Unlike the oscillatory solution (6.51), this exponential solution
grows increasingly large with ¢. Hence, plainly, equations (6.48) and (6.54) will
describe totally distinct kinds of physical effects.

Itisuseful toobserve that hyperbolic|functions may be introduced to express
the solution by formulas analogous to those used in the trigonometric case. For



130 Chapter 6

comparison, the results are presented in order parallel to the trigonometric formulas
(6.49)—(6.53).

Representation in terms of hyperbolic functions. The hyperbolic sine and cosine
functions are defined by

1 1
sinhz = E(ez —e9), coshz = E(eZ +e7%). (6.56)

These equations may be solved to obtain the exponential functions e? and e™%:
e*? = coshz + sinhz. (6.57)

This is similar to (6.49). Then, with r = iq, the general solution (6.43) of the
homogeneous equation associated with (6.54), namely,

iig —q*uy =0, g real, (6.58)
may be written as
uy(t) = Asinhgt + B coshgt, (6.59)

wherein A and B are two real constants of integration. Use of the first of (6.56) in
(6.47) when r = iq yields the following formula for a particular solution of (6.54):

t
up(t) = f h—(qQ sinhq(t — t)dr. (6.60)

The general solution of (6.54), given by (6.55), is the sum of (6.59) and (6.60).
Formally,

u(t) = Asinhgt + Bcoshqt + up(t). (6.61)

This completes the parallel representation of results (6.58)—(6.61) which are to
be compared with the corresponding equations (6.50)—(6.53) for the trigonometric
solution. Although the forms of solutions (6.53) and (6.61) are similar, it is evident
that their physical nature is quite different. The trigonometric functions in (6.53)
are periodic, they recur over and over again. But, as seen by (6.56), the hyperbolic
functions in (6.61) grow indefinitely with the variable ¢. The graphs and some
additional basic properties of the hyperbolic functions follow.

Further properties of the hyperbolic functions. Graphs of the functions (6.56) and
some basic properties of the hyperbolic functions provide a helpful picture of their
growth behavior. To start with, differentiation of (6.56) shows that

d d
—(sinh z) = cosh z, —(cosh z) = sinh z. (6.62)
dz dz

‘We thus see an important difference in the derivatives of the hyperbolic functions



Dynamics of a Particle 131
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Figure 6.12. Plots of the hyperbolic functions sinh z
and cosh z. +

compared with their trigonometric counterparts. It also follows easily from (6.56)
or (6.57) that

cosh? z — sinh? z = 1. (6.63)

This identity reveals a simple geometrical property that accounts for the
name of these functions. Indeed, with x = coshz and y = sinh z, (6.63) yields
x2 — y? = 1, the equation of equilateral hyperbolas with asymptotes along the
bisectors of the coordinate lines. Hence, the functions (6.56) are named hyperbolic
functions. The trigonometric functions x = cos z and y = sin z, on the other hand,
yield x> + y? = 1, the equation of a unit circle. And we recall that the trigonometric
functions are also known as circular functions.

The identity (6.63) shows that, unlike their trigonometric cousins, cosh z >
sinh z for all values of z. This means that their graphs never intersect; the graph
of coshz lies always above the graph of sinhz. Moreover, (6.56) and (6.62)
show that sinh z vanishes at z = 0 where its slope, coshz, has value 1. Since
d*(sinh z)/dz? = 0, the graph of sinh z has an inflection at z = 0. Equation (6.56)
shows that sinh(—z) = — sinh z is an odd function of z. The graph of sinh z thus
has the form shown in Fig. 6.12. The graph of cosh z, also shown there, has a
minimum at z = 0 where its value is 1, and, by (6.56), cosh(—z) = cosh z shows
that cosh z is an even function of z. Clearly, as z grows indefinitely large, (6.56)
indicates that both functions grow indefinitely, as shown in Fig. 6.12. It can be
proved from statics that the graph of the hyperbolic cosine function, also called
thejcatenaryyisithesshapesassumedsbysasuniform, heavy cord supported at its ends
and hanging under its own weight, an easy experiment for the reader.
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6.7. The Simple Harmonic Oscillator

The differential equations (6.48) and (6.54) occur in a wide variety of dynam-
ical problems, the simplest kind being those for which i(r) = 0. These equations
reduce in this case to the respective homogeneous equations (6.50) and (6.58).
In particular, the oscillations of a mass attached to an ideal linear spring and the
small amplitude oscillations of a pendulum are motions of physical systems that
are governed by the same homogeneous equation (6.50)—the equation of a so-
called simple harmonic oscillator. An example in which (6.58) occurs will follow
shortly. We begin with the linear spring/mass system.

6.7.1. Hooke’s Law of Linear Elasticity

We usually think of a spring as a helically wound wire device. But all solid
bodies, like a solid rubber block or cord, behave in the same springy way, except
that the deformation of most solid bodies is usually very small. So all solid bodies
whatsoever, whether metal, wood, glass, or stone; hair, silk, tissue, or bone; and so
on, are springs too. In general, to characterize the uniform, uniaxial elastic behavior
of a deformable solid body under tensile or compressive end loads, we adopt an
ideal spring model described by Hooke’s law: The uniaxial force Fy required to
stretch or to compress an ideal spring is proportional to the uniaxial change of
length § of the spring from its natural, undeformed state:

Fy =ké. (6.64)

The constant k is called the spring constant. Sometimes the terms elasticity, mod-
ulus, or stiffness are also used. Clearly, [k] = [F/L]. An ideal spring for which
(6.64) holds is known as a linear spring.

The linear force—deformation law (6.64) was proposed by Robert Hooke in
1675. To protect his discovery from use by others while he exploited its appli-
cations, he claimed priority for the law and published its substance in a Latin
anagram, “ceiiinosssttuu.” Three years later, and 18 years since his first knowl-
edge of it, Hooke unscrambled the puzzle to read:T “ur tensio sic vis;” that is, the

[Tt}

1 Notice that the anagram has a double “u,” contrary to its Latin decipherment by Hooke. See R.
Hooke, De Potentia Restitutiva or of Spring, 1678; reproduced in R. T. Gunther, Early Science in
Oxford, Volume VIII, The Cutler Lectures of Robert Hooke, pp. 331-56, Oxford University Press,
Oxford, 1931. This is not an error. In early Latin manuscripts v often appears in print as . In fact, M.
Espinasse in Robert Hooke, University of California Press, Berkeley, 1962, p. 78, writes literally, “ut
tensio sic uis”” Hooke’s own decipherment, however, is commonly adopted in books on elasticity, its
history, and Hooke’s life. See Volume 1, p. 5, of I. Todhunter and K. Pearson, A History of the Theory
of Elasticity and of the Strength of Materials, Dover, New York, 1960; L. Jardin, Ingenious Pursuits:
Building the Scientific Revolution, pp. 322-3, Doubleday, New York, 1999; and the remarkable
treatise by J. E Bell, “The Experimental Foundations of Solid Mechanics,” Fliigge’s Handbuch der
Physik, Volume VIa/l, pp. 156-60, Springer-Verlag, New York, 1973.
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extension of any spring increases in proportion to the tension. Hooke demonstrated
by experiments that in addition to solid bodies, the rule also holds for helical wire
springs for which the deformation § may be large. Because Hooke’s law is linear,
it follows that the extra force F* required to stretch (or compress) the spring an
additional amount 7, say, is proportional to n; i.e., F* = kn. This simple superpo-
sition rule does not apply to any nonlinear spring. Any potential confusion about
the effect of initial deformation of a spring in the formulation of a problem may
be avoided by use of a deformation variable defined with respect to the natural
state.

Hooke’s rule is not a fully accurate characterization of a springy body for
all cases of practical interest. It ignores, for example, the possibly large twisting
effect induced by uniaxial loading of a helical spring, whose torsional stiffness
and mass usually are neglected in applications of (6.64). And it does not hold for
large deformations possible in nonlinear rubberlike materials or biological tissues.
On the other hand, Hooke’s law provides a mathematically simple and useful
description of the physical nature of phenomena in a great variety of practical
cases where the elastic response of a solid may be reasonably modeled by a linear
spring.

6.7.2. The Linear Spring-Mass System

Let us consider a linear spring fixed at one end and having a mass m (some-
times called the load) attached to its other end, and either suspended vertically or
supported by a smooth plane surface. The mass of the spring is generally considered
negligible in comparison with the mass m; so, henceforward, its mass is ignored.
When m is displaced a distance § from the natural, unstretched spring configura-
tion, it exerts on the spring a uniaxial force Fy given by (6.64). In response, the
spring exerts an equal but oppositely directed restoring force Fs = —Fy = —k$J,
called the spring force, that acts always to return the mass toward the natural state of
the spring. Hence, if released, the mass will vibrate under the alternating extension
and compression reactions of the spring itself. Let us first study the oscillations of
the mass on a smooth horizontal surface, as shown in Fig. 6.13.

6.7.2.1. Horizontal Vibrations of a Mass on a Linear Spring

To characterize the horizontal oscillatory motion of the mass, we suppose
that m is given an initial uniaxial velocity vy = vpi from its natural equilibrium
configuration in ® = {F;1i, j} shown in Fig. 6.13. The free body diagram of m is
shown in Fig. 6.13a. The weight W is balanced by the normal reaction N of the
smooth surface, so the only force that affects the horizontal, uniaxial motion of
m'is the spring force Fs'="—kxi, in which x = § denotes the displacement of m,
the change of length of the spring from its natural state. Therefore, the equation
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Figure 6.13. An ideal spring-mass system.

of motion of m, namely, Fg = mXi, becomes

k
i+px=0 with p=,/—. (6.652)
m
This equation has the form (6.50) whose general solution is given by (6.51):

x(t) = Asin pt + Bcos pt. (6.65b)

An oscillatory motion described by (6.65b) is called a simple harmonic motion.

The integration constants A and B are determined by specified initial con-
ditions; presently, x(0) = 0, %(0) = vp. Since x(0) = B = 0, (6.65b) reduces to
x(¢) = Asin pt, and with (0) = Ap = vy, we have the general solution

x(t) = 2 sin pr. (6.65¢)
p

The maximum displacement of m from its equilibrium state is called the
amplitude of the oscillation. The amplitude of the motion (6.65¢) is given by
x4 = vo/p. The graph of the motion (6.65c) and the corresponding velocity
X = vg cos pt are shown in Fig. 6.14. The motion of m varies from x4 to —x4
over and over again. Also, the displacement x(¢), and similarly the velocity v(z),
has the same value at times ¢t +2nnw/p =t +nt for n =0,1,2,...; that is,
sin(pt + 2nm) = sin p(t 4+ nt) = sin pt. Hence, the motion (6.65¢) is said to be
periodic, and the least nonzero time t = 27/ p for which x(¢) = x(¢ + 7) is called
the period of the motion—it is the time required to complete one oscillation. (See
Fig. 6.14.) The number of periods that occur in a unit of time is the number of
oscillations of the mass per unit time. This number, denoted by

Fbe P (6.65d)

T 2n’
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x(t),x(t)
—%(t) = v_cos pt

0

~x(t) = xAsin pt

Figure 6.14. Graphs illustrating the periodic nature of the simple harmonic motion and the simultaneous
velocity of the load in a linear spring-mass system.

is called the frequency of the oscillations. The measure units of f are expressed as
cycles per unit time. When the time is in seconds, the measure of f commonly is
stated in cycles per second or Hertz, abbreviated 1 cps= 1 Hz. Since there are 27
radians in one cycle, p = 2 f is called the circular frequency; its measure units
are radians per unit time. Clearly, [p] = [f] = [T~'] and [r] = [T].

The relation for the circular frequency of a simple harmonic motion may be
read immediately from the coefficient of the differential equation of motion (6.65a).
Consequently, the period and the frequency of the motion of the mass of a linear
spring-mass system may be obtained at once from (6.65d). We thus find

m 1 [k
T = 271\/;, f= wVm (6.65¢)

The graph of the uniaxial velocity X = v = vg cos pt versus the uniaxial po-
sition x = x4 sin pt, called a phase plane diagram, is an ellipse centered at the
origin and having semi-axes determined by x4 and vy:

X 2 % 2
[_] +[_] =1. (6.65f)
XA Vo

‘We may suppose that p in (6.65a) is known. Then for each choice of initial veloc-
ity vp, the pair (x4 = vo/p, vg) determines a different ellipse, and hence (6.65f)
describes a family of concentric ellipsestMoreover, the normalized plot of X /vg
versus x /x4 reduces every member of the family (6.65f) to a single unit circle.
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The periodic nature of the motion is exhibited by these closed phase plane paths,
all of which are traversed in the same time t = 27/ p, the period of the motion.
Equation (6.65f) has exactly two solutions x = +x, for which x = 0, and hence
the amplitudes tx 4 are the extreme points in the motion at which the mass comes
momentarily to rest. The £ sign reflects the symmetry of the motion about x = 0,
the equilibrium state of rest—the unique time independent solution of (6.65a).
And, by (6.65f), the greatest velocity X = vy also occurs at x = 0. These results
are evident in Fig. 6.14. We shall find in Chapter 7 that the phase plane curves are
related to the energy of the system.

For other initial conditions, the form of the solution (6.65¢), hence also the
relations describing the amplitude and the phase plane trajectory, will be some-
what different. General formulas for the amplitude and the phase plane graph for
arbitrary initial data assigned in any simple harmonic motion (6.65b) are presented
later.

6.7.2.2.  Vertical Vibrations of a Mass on a Linear Spring

Now let us consider the effect of gravity on the oscillatory motion of a load m
supported vertically by a linear spring. The weight produces a static deflection §g
of the spring from its natural state, and the mass is then set into vertical oscillatory
motion about this equilibrium state. We shall see that the motion of m relative
to the unstretched state is described by an equation that may be transformed to
another having the same form as (6.65a) relative to the static equilibrium state.

Let us fix the origin at the natural state of the spring so that i is in the
downward direction of g = gi. Construction of the free body diagram of m is left
for the reader. The weight W = mgi produces a static deflection 8 such that the
spring force exerted on m is Fg = —k§i; hence, the static equilibrium equation
W+ Fg = (mg — kdg)i = 0 yields

kég = mg. (6.66a)

When the mass is set into vertical motion, the weight W is unchanged but the
spring force becomes Fg = —kxi, where x denotes the stretch of the spring from its
natural state. Hence, the equation of motion W + Fg = (mg — kx)i = mii yields
kg

i+ pix =g, with p2=z=g,

(6.66b)

wherein (6.66a) is introduced. This equation has the form of (6.48) in which
h(t) = g is constant. Therefore, recalling the method leading to (6.45b) and (6.53),
we see that the general solution of (6.66b) is

x(¢) = Ccos pt + Dsin pt + i, (6.66¢)
p

in which C and D are integration constants to be fixed by the initial data.
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This shows that the motion of m is simple harmonic, but the center of the
oscillations is displaced to the position at xg = g/p* = mg/k = 8, the static
equilibrium position of m. Hence, introducing the new variable z = x — 6g to
describe the displacement of m from its static equilibrium position, the equation
of motion in (6.66b) transforms to

i+ pPz=0. (6.66d)

This has the same form as our earlier equation (6.65a) for the horizontal motion;
s0, the solution (6.66¢) may be cast in the form

z(t) = x(t) — 8g = C cos pt + Dsin pt. (6.66€)

Hence, both linear spring-mass systems are governed by the same kind of equation.
When the displacement is measured from the vertical static equilibrium position
of a linear spring-mass system, in effect, the static deflection and the weight of
the load may be ignored in view of the balance equation (6.66a). Therefore, the
static equilibrium state is a convenient reference state from which to study the
motion of a linear system, because we need only consider the additional spring
force F* = —kz = m7 for the displacement from that state. This superposition
procedure, however, cannot be used to study the motion of a load on a nonlinear
spring; in this case, the undeformed reference state must be used.

The frequency f = p/2n = (v/k/m)/2n of the vibration of m is independent
of the initial data. In view of (6.66a), this may be rewritten in terms of the static
deflection alone, namely,

1 /g

f= 7\ s, (6.66f)
Thus, regardless of the spring stiffness and independently of the amplitude, any
vertical loading that produces the same static deflection in different linear springs
will oscillate with the same frequency. Of course, for springs of different moduli,
the loads needed to produce the same static deflection differ; nevertheless, the
measured frequency of their oscillations is identical for all amplitudes, and hence,
in this sense, formula (6.66f) is universal.

We now study the small amplitude oscillations of a pendulum. Although this
physical system is quite different from the spring-mass system, both are governed
by the same basic equation of motion characteristic of a simple harmonic oscillator.

6.7.3. The Simple Pendulum

A simple pendulum, shown in Fig. 6.15, consists of a small heavy body
of mass m, called the bob, attached to one end of a thin rigid rod or string of
length £, negligible mass, and suspended from a smooth pin or hinge at the point
01 The pendulumis displaced torswing about its vertical equilibrium position.
Air resistance and the mass of the rod are ignored. We wish to determine the
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Figure 6.15. A simple pendulum and its free body
diagram.

frequency and period of its small amplitude oscillations in the vertical plane, when
the pendulum is released from rest at a small angle ;. The problem, however, is
first formulated exactly for large amplitude oscillations.

The free body diagram in Fig. 6.15 shows the gravitational force W = mg
and the rod tension T acting on the bob. The equation of motion for the angular
placement 6(t) of the bob from its vertical equilibrium position is readily described
in terms of intrinsic variables. In accordance with (6.3), F = W+ T = m(st +
«x$%m), in which § = €4, § = €6, and ¥ = 1/£. Therefore,

m(£dt + £6°n) = Tn — W(sin6t + cos On). (6.67a)
This yields the two scalar equations of motion:

6 + p*sinf =0, T = ml(6® + p*cosb), (6.67b)

p= \/% . (6.67¢)

Let the reader confirm these equations by use of (6.4).

The first equation in (6.67b) is an ordinary nonlinear differential equation for
the angular motion 6(¢) and the second gives the rod tension 7'(@) as a function
of 6. The exact solution of these equations for finite amplitude oscillations of a
pendulum will be studied in Chapter 7. Presently, however, we consider only small
values of 6 so that all squared and higher order terms in # and its derivative § may
be neglected. Then use of the series functions (2.17) in (6.67b) leads to

G+p*0=0 T=mg=W. (6.67d)

where

Certainly, for sufficiently small placements 6(t), it is expected that the rod
tensionydoesmotyvaryssignificantlysfromyits static value, the weight of the bob, as
shown in (6.67d). The first equation in (6.67d) has the same form as (6.65a); so,
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the small amplitude pendulum motion is simple harmonic with circular frequency
p defined by (6.67c). Therefore,

0(t) = Asin pt + B cos pt. (6.67e)

The constants A and B are determined by the given initial conditions that the
pendulum is released from rest at a small angle 6, so that 8(0) = 6, and 6(0) = 0.
From (6.67¢), the angular speedis @ = Ap cos pt — Bp sin pt. We thus find A = 0
and B = 6, and (6.67¢) yields the solution

6(t) = 6y cos pt. (6.67f)

The angle 6 is the amplitude, the maximum angular placement from the
vertical equilibrium position in the motion (6.67f). Recalling the relations (6.65d),
we find the small amplitude frequency and period of a simple pendulum with
circular frequency (6.67c):

1 /g £
=—_/=, =2 [—. 6.67
f 7o\ 7 T ﬂ\/; (6.67g)

The period is the time required for the pendulum to swing from 6y to —6, and
back again to 6. The period of the small amplitude, simple harmonic motion of
a pendulum is independent of this amplitude. The finite amplitude motion of a
pendulum described by the first equation in (6.67b), though still periodic, is not
simple harmonic. It is shown in Chapter 7 that the periodic time in the finite motion
varies with the amplitude.

6.7.4. The Common Mathematical Model in Review

The linear spring-mass system and the simple pendulum (for small amplitude
oscillations) are merely two examples of a great many physical systems that are
characterized by the same mathematical model. Their common model, called the
simple harmonic oscillator, is described by the homogeneous differential equation

i + p*u =0, (6.68)
whose solution
u = Asin pt 4+ B cos pt, (6.69)

is simple harmonic. The constant circular frequency p and period t = 27/ p, or
the frequency f = 1/7, may be read immediately from the positive coefficient in
(6.68).

The amplitude of the motion of a harmonic oscillator may be obtained by
introduction of two other constants U and « defined by

A =Ucosa, B = Usina. (6.70)
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Therefore, the new constants are related to the former by
B

U=+VA?+ B?, tana = 1 (6.71)

We lose no generality in taking U positive, and & may be either positive or negative
valued.

Use of (6.70) in (6.69) yields the following alternative form for the motion
u(t) of the simple harmonic oscillator:

u(t) = Usin(pt + ). (6.72)

The reader may show that with A = Usin 8, B = U cos B, where 8 = /2 — a,
an alternative form of the solution (6.72) is given by u(t) = U cos(pt — B). Either
solution shows that U, the maximum value of u(z), is the amplitude of the motion.
The angle pt + « (or pt — B) is called the phase angle or simply the phase of the
motion; it characterizes the state of the oscillation at a specific time. The phase
constant o (or B) defines the initial phase of the motion. From (6.72), the velocity
may be written as

u(t) = Upcos(pt + ). (6.73)

Thus, if initially we are given u(0) = ug and #(0) = vy, then (6.72) and (6.73)
yield ug = U sine, vy = Up cos«. In consequence, by (6.71), the amplitude and
initial phase may be expressed in terms of the initial data:

2
U= u%+(@> s o = tan™" <M>
p Vo

A graphical description of the motion is obtained from (6.72) and (6.73). For
arbitrary initial data and for each fixed frequency p, the graph of u(t) versus u(t)
for the simple harmonic oscillator motion is a family of concentric ellipses having
semi-axes determined by U and U p:

u\? i\’

(U) +(Up) =1. (6.74)
In general, the plane graph of & versus u for any single degree of freedom system
is called the phase plane graph. Thus, for each choice of initial data, the phase
plane graph for the simple harmonic oscillator is an ellipse defined by (6.74).
However, it is seen further that the normalized plot of &/ Up versus u/U reduces
every member of the family (6.74) to a single unit circle. The periodic nature of
the simple harmonic motion is exhibited by these closed curves. Since p is fixed
and the period does not depend on the initial data, all trajectories in the phase
plane are traversed in the same time 7. Equation (6.74) has exactly two solutions
u = U for which &z = 0 and two solutions & = U p at the equilibrium position
w=0;theunique timejindependent:solution of (6.68). Hence, the amplitudes U
mark the extreme positions in a simple harmonic motion at which the velocity
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momentarily vanishes; and the greatest velocity £Up occurs at the equilibrium
state.

This concludes our study of the simple harmonic oscillator. The effect of
viscous damping on mechanical vibrations, and some effects of inertial forces
induced by rotating bodies, including effects of the Earth’s rotation, and other
kinds of forces are explored later in this chapter. It is important to recognize
that not every vibration need be periodic, and not every periodic motion need
be vibratory. Random vibrations, for example, are not periodic, and steady orbital
motions are periodic but not vibratory. The following example of a particle moving
in an electromagnetic field exhibits a motion that is periodic but not oscillatory.
The solution procedure, however, is the same.

6.8. Motion of a Charged Particle in an Electromagnetic Field

A particle of charge g and mass m is ejected from an electronic device, with
initial velocity vy = vj at the place Xy = Ri in an inertial frame ® = {F;i;}. The
charge moves under the influence of constant and oppositely directed electric and
magnetic fields that are parallel to the axis of the gravitational field, as shown
in Fig. 6.16. The total body force acting on ¢ is F = F, + F,, + W; hence, with
(6.18), the equation of motion may be written as

d
K-ckxB=—(k-cxxB)=cE+g, (6.752)

where in ¢ = g /m. This vector equation is readily integrated to obtain the velocity

JEay]

Figure 6.16. Motion of a charged particle in uniform //
and oppositely directed electric and magnetic fields. I
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X as a function of x and ¢; thus,
x =cx X B+ (cE + g)t + Cy. (6.75b)

The constant vector of integration is fixed by the initial data x(0)= xg, X(0)= vy,
so that

CO = Vg —CXp X B. (6750)

Although (6.75b) cannot be integrated further, its use in (6.75a) leads to another
integrable result. Bearing in mind that the vectors B, E, and g are parallel, we
obtain

X¥—c?xxB)xB=cCyxB+cE+g. (6.75d)

Finally, substitution of (6.75c¢) into (6.75d), expansion of the triple products in the
result, use of the orthogonality condition B - xy = 0, and w = ¢B yields the vector
differential equation

%4+ w’x — c*(x- B)B = w’xg + cvo x B+ cE +g. (6.75¢)

Exercise 6.3. Show that (6.75¢) may be written as ¥ + P>x = -, in which
P? = 0*(i® i+ j ® j) and ~ is a constant vector. ]

We now introduce B = —Bk, E=FEk, g=—gk, xy = Ri, vy=vj,
and x = xi + yj + zk into (6.75e) and equate the corresponding vector compo-
nents to obtain the following three scalar equations of motion:

)'é+w2x=w2(.R—£>, Frwly=0, =24, (6750

in which 2A = cE — g. The first pair of these equations shows that both x and
y are simple harmonic functions, and hence the general solution of the system
(6.75f) is given by

x(t)=a+ K coswf + Lsinot,  with a=R——, (675
w

y(t) = Mcoswt + Nsinwt and z(t) = At + Pt 4+ Q. (6.75h)

The initial data x(0) = X = Ri and %(0) = vy = vj determine the integration
constants L = M = P = Q = 0and K = N = v/w. Hence, the foregoing system
has the solution

X)) =a+ 2coswr, Y1) =Zsinwr,  z()= A% (6.75)
w w

It is seen that (x — a)* + y2 = /a))2 is the equation of a circle centered at
(a, 0), hence (6.751) suggests that the trajectory of g looks a bit like a cylindrical
helix of radius.0.=v/w-By. taking .R.=p in (6.75g), we have a =0, and the
cylinder axis is shifted to the origin of @. The first two equations in (6.75f) have
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essentially the same form as equation (6.68) for the harmonic oscillator, but the
motion of ¢ is not oscillatory. On the other hand, the motion in the xy-plane
is periodic; the circular frequency w = ¢B, evident from (6.75f), describes the
constant rate of rotation of ¢ about the cylinder axis, and the periodic time 7 =
27 /w is the time required for the particle to make one full swing around that
axis as it advances along z. Notice that the tangent to the path does not make a
fixed angle with the cylinder axis; rather, t - k = 2A#(v? + 4A%¢?)~!/2, The pitch
increases with the square of the number of turns: p, = z(nt) = n?z(t),and z(t) =
A/4mw?* = py. So, the path is not a true cylindrical helix.

6.9. Motion of a Slider Block in a Rotating Reference Frame

We now turn to a different class of problems whose solutions involve the
hyperbolic functions. Two problems concerning the motion of a slider block in
a slot milled in a rotating table are studied. The first concerns the free sliding
motion of the block due to inertial forces induced by the table’s rotation. The
second problem is similar, but more interesting. An additional controlling spring
is introduced, and depending on the nature of two physical parameters, one due to
the rotation and the other due to the spring, the governing equation of motion may
have a solution of either trigonometric or hyperbolic type, or neither.

6.9.1. Uncontrolled Motion of a Slider Block

A block S of mass m shown in Fig. 6.17 is constrained initially by a cord
fastened at the end point A of a smooth slot milled in a table that turns in the
horizontal plane with a constant angular speed w. When the string is cut suddenly,
the block slides freely in the slot. We wish to determine the motion x(S, ¢) of the
slider block relative to the spinning table, and the behavior of the force that acts
on the block as a function of its position in the slot and as a function of time.

The free body diagram of the sliding block is shown in Fig. 6.17a. Of course,
the string force Fg = 0, and the weight of the block is W = —Wk. Because the
slot is smooth, it exerts on S only the normal contact forces N = —Nj in the
plane of the table and R = Rk perpendicular to it. The total force acting on S is
F =N+ R+ W, and hence the equation of motion for S in the inertial frame
® = {F;1;} fixed in the laboratory is given by

F=—-Nj+ (R — W)k = mag. (6.76a)
The absolute acceleration ag of S in ® may be obtained from (4.48). With

agr=10pwr=wkywrr=10pandsx(Syt)= xi + aj in the reference frame ¢ =
{O; i} fixed in the table, as shown in Fig. 6.17, the total acceleration of S referred
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Figure 6.17. Relative motion of a slider block on a rotating table.
to @ is
as = (¥ — 0*0)i + Qui — aw?)j. (6.76b)
Substitution of (6.76b) into (6.76a) yields the scalar equations
¥ —o*x=0, N=m@aw’—2wi), R=W. (6.76¢)

The first of these equations determines the motion x(¢) of S relative to the
table, and the next one determines the normal contact force N either as a function
of x or of ¢. The last relation confirms that since there is no motion of S normal
to the table, the slot reaction force R balances the weight W, sothat R+ W =0
in (6.76a). Therefore, in future problems where the motion is constrained to a
smooth horizontal plane, for simplicity, the trivial normal equilibrated forces may
be ignored.

The first equation in (6.76¢) has the same form as the homogeneous equation
(6.58) whose solution is given by (6.59). Therefore, the slider’s motion is given by

x(t) = Asinhwt + B cosh wt. (6.76d)

a in frame ¢, as shown in Fig. 6.17,
cosh wt + Bw sinh wt, it follows that
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A =0, B =a;hence
x(t) = acoshwt, X(t) = awsinh wt. (6.76¢)
Therefore, the motion of S relative to the table frame may be written as
x(S, t) = a(cosh wti + j). (6.76f)

Use of (6.76e) in the second equation in (6.76¢c) gives the slot reaction force
N = —Nj as a function of time;

N = N(t) = —maw*(1 — 2sinh wt)j. (6.762)

Alternatively, use of the identity (6.63) yields the slot reaction force as a function
of the slider’s position along the slot:

N = N(x) = —mo*(a — 2v/x? — a?)j. (6.76h)

Let the reader show that the same result may be derived directly by integration of
the first equation in (6.76c) to find x(x).

These results show from (6.76g) that initially N(0) = —maw?j, and, as
time advances, the normal force N(¢) decreases to zero in the time t* for
which wt* = sinh~!(1/2) ~ 0.481, the instant when the slider is at the place
x* = a5 /2 ~ 1.118a in the slot. Afterwards, the normal, slot reaction force
reverses its sense of application to the opposite side of the block and grows again,
indefinitely for as long as the block is able to move outward. Suppose, for ex-
ample, that X(S, 0) = a(i + j) = 251 cm and @ = 20 /3 rad/sec (200 rpm). Then
a=25/ V2 cm, and the previous formulas show that N vanishes, and then re-
verses its sense of application, after t* ~ 0.023 sec when S has moved a distance
d* = x* — a ~ 2.086 cm from its initial position.

When the string was cut, the motion of the block along the slot was no longer
controlled, and the inertial effect of the table’s rotation drove the slider increasingly
farther from its rest state toward the end of the slot. The controlling effect of an
additional spring force is illustrated next.

6.9.2. Controlled Motion and Instability of a Slider Block

Suppose that the string shown in Fig. 6.17 is replaced by a linear spring of
stiffness k fastened at A and to the block S, initially at rest at the natural state
of the spring at x = a but otherwise free to slide in the smooth slot. We wish to
investigate the motion x(S, ) of the block relative to the rotating table.

The free body diagram of the sliding block is shown in Fig. 6.17a in the
table frame ¢. The forces are the same as before with the addition of the spring
force'Fs7=-=k(x=a)izSince theresissnoymotion normal to the horizontal plane,
R + W = 0, as noted before. Therefore, the equation of motion for S in the inertial
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frame &, but referred to the table frame ¢, is given by

F=N+Fs = —Nj—k(x — a)i = mag. (6.77a)
Here we recall (6.76b) to obtain the scalar equations
¥+ p*(1 — n®)x = ap?, (6.77b)
N = m(aew?® — 2wx), (6.77¢)
wherein, by definition,
p=JX 422 (6.77d)
m p

The physical nature of the motion determined by (6.77b) depends on the
coefficient p?(1 — n?). There are three cases to explore: (i) < 1, (i) n = 1, and
(iii) n > 1. Each case is studied in turn for the assigned initial data

x(0)=a, x(0)=0. (6.77e)

Case (i): n < 1; i.e. the angular speed w < p. Then the equation of motion
in (6.77b) has the form of (6.48) in which p? is replaced by Q2 = p?(1 — %)
and h(t) = ap? is constant. Recalling (6.45b) and (6.53), we see that the general
solution of (6.77b) is

x(t) = Asin Qt + B cos Qf + 1—1—5, with Q= py/1—n% (6.77f)
-n
The relative motion of § is simple harmonic, but the center of the oscillation

is displaced to the relative equilibrium position at

a

Xp = ———,

(6.77g)
defined by the unique time independent solution of the equation of motion (6.77b).
Notice that xg > a. Hence, introducing the new variable z = x — xg to describe
the displacement of S from its relative equilibrium position, we may write

4 _ AsinQr + Bcos Q. (6.77h)

) =x0) = 75 =

Consequently, the equation of motion in (6.77b) transforms to the familiar equation
F+ Q%2 =0, (6.77i)

the differential equation for the simple harmonic oscillator.

The initial values (6.77¢) yield B = a — xg = —an?/(1 —n*) and A = 0;
$05:2(t)r=-B:cos: Rt Theoscillations;occur symmetrically about the relative equi-
librium position xz with the amplitude z,,.. = |B| = an?/(1 — n?) and circular
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frequency Q given in (6.77f). We thus find that the motion of the slider in the case
when w < p is given by x(S, t) = x(¢)i + aj = (z(¢) + xg)i + aj, in which

2

)= -2 _cos@t. (6.77))
1 —n?

a
x(t)=1_ 5

Case (ii): n = 1; i.e. the angular speed @ = p. The general solution of the
differential equation of motion (6.77b), for the initial data (6.77e), is given by

x(t) = —ap 22 +a. (6.77k)

This result suggests that w = p is the critical angular speed of the table at which the
motion of § about its relative equilibrium position x ceases to be oscillatory and
now tends to grow indefinitely with time. The previously stable relative equilibrium
position (6.77g) of the slider block about which it oscillates when w < p, no longer
exists, a fact evident from (6.77b) for which no time independent solution exists
when n = 1. And hence, the relative equilibrium position xg of the slider block
is said to be unstable at w = p. In our study of infinitesimal stability defined
later, it is proved that the relative equilibrium state is stable if and only if w < p.
Investigation of the physical nature of the slot reaction force (6.77c), both here
and below, is left for the reader.

Case (iii): n > 1; i.e. the angular speed w > p. The equation of motion
(6.77b), in which the coefficient is now negative, has the form of (6.54) in which
g% = p*(n* — 1) and h(t) = ap?. Therefore, with (6.45b) and (6.61) in mind, the
general solution of (6.77b) is given by

x(t) = Asinhgt + Bcoshgt — (6.771)

a
N =1
where ¢ = p(n* — 1)V/2. Alternatively, the change of variable £(t) = x(t) +
a/(n* — 1) transforms the equation of motion (6.77b) to £ — g2 = 0, an equation
of the type (6.58) whose solution is given by (6.59).
The initial data (6.77¢) yields B = an®/(n* — 1) and A = 0. We thus obtain

from (6.77]) the relative motion x(S, 1) = x(#)i + aJ (E(t) —a/(n?=1)i+ aj
in which

2

&)= oY ———coshgt.  (6.77m)

a
1) =
x(1) o

The motion x(¢) relative to the table frame when w > p and the slider block is
released from rest at x(0) = a thus tends to grow increasingly large with time. At
some point, of course, Hooke’s law fails, the limiting extensibility of the spring
restricts the extent of the motion, and (6.77m) is no longer valid. Notice that the
timesindependentssolutionsof (6:77b)sinnthis case is not a physically meaningful
relative equilibrium state.
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Figure 6.18. Schema for the moment of momentum principle.

6.10. The Moment of Momentum Principle

In this section the Newton—Euler law is applied to derive an additional prin-
ciple of motion that relates torque and the moment of momentum of a parti-
cle. First, however, we recall the definition (5.20) to write the moment My of
a force F about a point O, either fixed or in motion relative to an assigned
frame ®:

My =xx F, (6.78)

in which x = X is the position vector from O to the particle P on which the total
force F acts, as shown in Fig. 6.18. Let O be a fixed point in the inertial frame
® = {F;i;} in Fig. 6.18, so that x = X =, the velocity of P in ®. Now recall
the definition (5.31) of the moment of momentum of a particle P, differentiate it

with respect to time, and use (5.34) to obtain

dh d
—f:xxd—[t)—f—vxmv:xxF.

In view of (6.78), this yields our additional principle of motion.

The moment of momentum principle: The moment about a fixed point O
of the total force acting on a particle P in an inertial frame ® is equal to the time
rate of change of the moment about O of the momentum of P in &:

dho

My = . Ni
0= (6.79)
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6.10.1. Application to the Simple Pendulum Problem

The moment of momentum principle (6.79) provides an alternative and often
simpler means to derive the appropriate equation of motion for a particle without
our having to address details concerning certain forces of constraint; otherwise,
it delivers no more information on the motion than may be obtained from the
Newton-Euler law. This is demonstrated in our review of the equation of motion
for a simple pendulum.

The forces that act on the bob are shown in Fig. 6.15, page 138. To apply
(6.79), we first determine the moment of these forces about the fixed point O. The
central directed string tension has no moment about O, while the weight exerts a
torque about O given by

Moy =x x W= —mglsinfb,

where b =t x n is a constant unit vector perpendicular to the plane of motion.
The moment of momentum of the bob about the fixed point O in Fig. 6.15 is given
by hp = x x mv = —fn x m€t = m£>0b, and hence

dhy /dt = me26b.

Collecting this data in (6.79), equating the components, and writing p*> = g/, we
obtain the equation & + p2sin@ = 0 for the angular motion 6(¢) of the pendulum
bob, which is the same as the first equation in (6.67b). Because the cord tension
has no moment about O, the moment of momentum principle eliminates the need
to consider it further in the discussion of the motion of the bob.

6.10.2. The Moment of Momentum Principle for a Moving Point

The moment of momentum principle (6.79) holds only for an arbitrary point
O fixed in the inertial frame ®. We now determine the form of this principle when
O is an arbitrary moving point in ®.

The moment about O of the momentum p(P, t) = m(P)X(P, t)in the inertial
frame & is defined by (5.31) in which point O may be either a fixed or a moving
moment center. Hence, when O has an arbitrary velocity vo in ®, the derivative
of (5.31) with respect to time in ® is given by

f10=Xxp+xxF,

wherein x = X — v,. Hence, use of (6.78) now yields the moment of momentum
principle for an arbitrary moving reference point O:

Mo =ho +vo xp. (6.80)

Therefore, the moment of momentum principle (6.79) may hold with respect to a
moving point O if and only if Vo X p = 0,|i.e. when and only when the velocity of
O is parallel to the velocity of the particle P; otherwise, O must be a fixed point.
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Figure 6.19. Motion of a pendulum having a moving support.

In general, then, the modified principle (6.80) must be used when O is a moving
reference point. An application of this rule follows.

Example 6.14. A pendulum bob B attached to a rigid rod of negligible mass
and length £ is suspended from a smooth movable support at O that oscillates about
the natural undeformed state of the spring so that x(¢t) = xo sin Q¢ in Fig. 6.19.
Apply equation (6.80) to derive the equation of motion for the bob.

Solution. The forces that act on the pendulum bob B are shown in the free
body diagram in Fig. 6.19. Notice that the tension T in the rod at B is directed
through the moving point O. Moreover, the spring force and normal reaction
force of the smooth supporting surface also are directed through O; but these
forces do not act on B, so they hold no direct importance in its equation of motion.
Consequently, the moment about the point O of the forces that acton B atxz = fe,
in the cylindrical system shown in Fig. 6.19 is given by

My =xp x W = —£W sin ¢k. (6.81a)

The absolute velocity of B is determined by vz = vy + w X Xp, in which
w = ¢k and vp = xi = xpQcos Qti = vpi. Thus,

vp = voi + {de,, with v = xS cos Q1. (6.81b)
With the linear momentum p = mvg and use of (6.81b), we find
Vo X P = voi x mlde, = mvodlsin gk. (6.81c)

The moment of momentum about O is given by hy = xp x p = m€(vp cos¢ +
£¢)k, and its time rate of change is

ho = ml(ap cosd — vod sing + LP)k, (6.81d)
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in which ap = vp = —x¢Q?*sin Q¢. Substituting (6.81a), (6.8}0), and (6.81d)
into (6.80), we find —£W sin ¢k = m€(—xo Q> sin Qf cos ¢ + £¢)k. Hence, with
W = mg, the equation of motion for the bob may be written as

x092

é + p*sing = cos ¢ sin 1, (6.81e)
where p? = g/¢. The solution of (6.81¢) for small ¢(¢) is discussed later in our
study of mechanical vibrations. (See Example 6.15, page 161.) O

6.11. Free Vibrations with Viscous Damping

The simple harmonic oscillator is the fundamental model of the theory of me-
chanical vibrations. Its motion is a perpetual sinusoidal oscillation; once set into
motion, the oscillation continues indefinitely. In real situations, however, there
usually is a dissipative or viscous drag force, called a damping force, that causes
the vibration eventually to die out. If the damping force is very small, the sim-
ple harmonic oscillator often is a useful model. On the other hand, when friction
devices or shock absorbers are used in mechanical systems, it is the intent of the
design that their damping effect be considerable. The suspension system of an
automobile, for example, is designed to dampen smoothly and quickly the vibra-
tions induced by the irregular motion of the vehicle over a rough road. The viscous
damper used to ease the automatic closing of a door and prevent its slamming is an-
other example of the useful effects of damping. Other cases where damping effects
are sometimes desirable and sometimes not arise in instrument design. Damping
of the potentially violent needle motion of a galvanometer can prevent damage
to the instrument when the current is measured, whereas dissipative effects in a
gravitometer may seriously affect the accuracy of gravity measurements.

The analysis of induced motion, damped or not, is also important. The motion
of a structure induced by an earthquake or by aerodynamic effects of wind, the
sudden wing vibration of an aircraft exposed to high winds or turbulence, and
the vibration of a vehicle induced by a bumpy road obviously are undesirable but
unavoidable environmental effects. On the other hand, magnification of induced
motions is essential in the design of seismographs and certain flight instruments.

The analysis of the kinds of problems described above generally is quite
complex, especially when vibrational effects are nonlinear; however, a great variety
of problems that involve damping and induced motions can be adequately modeled
by a simplified damped spring-mass system that consists of a load of mass m, a
linear spring of constant stiffness &, and a linear viscous damper or dashpot. A
typical model of a damped spring-mass system is shown in Fig. 6.20.

A dashpot consists of a piston that moves within a cylinder containing a fluid,
usually oil.- When the piston is moved by the load, it exerts a viscous retarding force
on the load. For simplicity, we model this viscous force by Stokes’s law (6.29) and
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Figure 6.20. Model of a damped spring-mass system.

write Fp = —cii, in which c is a constant damping coefficient. The spring force
is a restoring force given by Fg = —kxi, where x(¢) denotes the displacement
of the load from the natural state of the system. The other applied forces in Fig.
6.20 include a disturbing force F*(¢t) = F*(¢)i, attributed to certain environmental
effects of the sort mentioned above. The free body diagram in Fig. 6.20a shows that
the weight W is balanced by the normal reaction force N of the smooth surface,
and hence the motion x(¢) is determined by the differential equation

m¥i + cx + kx = F*(t). (6.82)

If the disturbing force F*(¢) = Fy is constant, the motion is called a free vibra-
tion; otherwise, it is called a forced vibration. When c is zero or may be considered
negligible, the motion is said to be undamped. The undamped, free vibrational mo-
tion is just the simple harmonic motion (6.65a) studied earlier. We next consider
the problem of damped, free vibrations of the load.

6.11.1. The Equation of Motion for Damped, Free Vibrations

In a free vibration, the only effect of a constant disturbing force F* = Fy, such
as gravity, is to shift the origin to the new position z = x — xg, where xp = Fy/k
is the unique time independent, relative equilibrium solution of (6.82). Therefore,
by this simple transformation, all damped, free vibrations of the system in Fig.
6.20 are characterized by the differential equation for the damped, free vibrational
motion of the load m about its relative equilibrium position:

P4 20z +pPz=0, (6.83)

wherein the coefficients are constants defined by

20 =—, p=4—, (6.84)

C
m m
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in which p is the circular frequency of the familiar undamped spring-mass system.
The coefficient v is named the damping exponent. The damping coefficient has the
physical dimensions [c] = [FV~'] = [MT~!],andhence[v] = [p] = [T ~!]. The
dimensionless ratio

¢

= — (6.85)

_V
g—p—‘zmp,

is known as the viscous damping ratio.

6.11.2. Analysis of the Damped, Free Vibrational Motion

The general solution of (6.83) may be obtained by several methods. One
familiar approach is described at the end of this section in an exercise for the
reader. Another useful method that simplifies the presentation and emphasizes the
physical nature of the damping adopts a trial solution of the form

2(t) = e Plu(r). (6.86a)
The constant 8 and the function u(¢) are then chosen to eliminate the damping
term from the transformed equation for u(¢). Substitution of (6.86a) into (6.83)
yields

i +2(v — Bt + (B> — 2vB + pu = 0.
We thus choose 8 = v to remove the damping term; then u(z) is given by the
general solution of the homogeneous equation
i +riu =0, (6.86b)

wherein, with the aid of (6.85),

rt=p?—v? = p*(1 - ). (6.86¢)

Equation (6.86b) has the structure of equation (6.41) whose general solution
for r # 0 is given in (6.43) in which r may be either real or complex. We use this
result in (6.86a) to obtain the solution of (6.83) in the general form

2(t) = e7V(Cre" 4 Cre™i"), (6.86d)

in which Cy, C, are arbitrary constants. The role of the damping exponent v is
now clear. From (6.86¢), there are three physical cases to consider: v < p, v >
p, v = p.In the latter case, r = 0 and we need only solve the equation ii(t) = 0.
We shall begin with the case for which v < p.

Case (i): Lightly damped motion. If ¢ = v/p < 1, then r> > 0 in (6.86c);
hence (6.86b), with r = w > 0, has the general solution u(t) = Acoswt +
B sin wt, wherein

w=pyl—1%<p. (6.86¢)
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Therefore, the general solution of (6.83) provided by (6.86a) is
z2(t) = e V(A coswt + Bsinot), (6.86f)

wherein A and B are real constants determined by the initial data.

The solution (6.86f) is oscillatory but not periodic. Because of the damping
factor e, the oscillations decay in time so that z — 0 as ¢t — o00; but in its
oscillatory motion the load returns again and again to the relative equilibrium state
at z = 0. In fact, by (6.86f), if the mass passes through z = 0 in a given direction at
time ¢,, then at time ¢t = 1, + 27 /w it will pass z = 0 again in the same direction.
The time 7 = 27 /w, therefore, is called the period of the lightly damped motion,
and the constant w defined in (6.86e) is named the damped circular frequency.
Hence,

1 w

= (6.86g)

Ja

defines the frequency of the damped, free vibration. Notice, however, that the
motion itself in (6.86f) is not periodic, because z(t + t) # z(¢).

The lightly damped motion (6.86f) may also be visualized from its equivalent
form

2(t) = z0e~"" cos(wt + A) = zoe V" sin(wt + V), (6.86h)

in which zy and A (or ¥) are integration constants. The graph of the first equation
is illustrated in Fig. 6.21. The initial displacement is zo cos A. The initial phase

z(t%
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Figure 6.21. Graph of the motion of a lightly damped harmonic oscillator.
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A, however, may be chosen to adjust the time origin so that zy is the initial dis-
placement. The damping factor e~ reduces in time the amplitudes of successive
oscillations; these occur in time 7. We see from (6.86¢) that the damped circular
frequency w is smaller than the circular frequency p for the undamped, simple
harmonic case. Therefore, the effect of damping is to decrease the frequency of the
oscillations compared with those of the undamped case. However, if v < p, so
that the damping is very slight, the term e~ stays close to unity for large values
of ¢, and (6.86f) models more precisely the actual physical behavior of the ideal
simple harmonic oscillator.

An oscillographic recording of the motion in Fig. 6.21 may be obtained by
experiment, and this graph can be used to determine the damping parameters from
measurements of any two successive amplitudes at times #, and #,+ =, + 7.
Although the peak values of z(#) do not quite touch the exponential envelope
lines, they often are sufficiently close for practical experimental purposes. With
(6.86h) and z,, = z(t,), we find z,,/z,+1 = €"". Thus, the natural logarithm of this
ratio, called the logarithmic decrement A, determines v and hence ¢ in terms of
measurable quantities:

A=log " — 1. (6.861)
Zn+1

Therefore, with (6.86g), the damping exponent is determined by v = f;A, and
(6.84) yields the damping coefficient ¢ = 2mf; A = 2mA /7. Alternatively, with
the aid of (6.85) and (6.86e) in (6.86i), A may be written in terms of the vis-
cous damping ratio ¢; we find A =2mv/w =27¢/(1 — ¢?)Y/2. Then ¢ may
be expressed in terms of the frequency ratio w/p = f;/f or the logarithmic
decrement A, which are measurable quantities, to obtain ¢ = (1 — (f;/f)})'/? =
AJ(4m? + AD)2,

It is useful to observe for the experimental situation that the damping param-
eters can be evaluated by use of data for any number of complete cycles in the
oscillograph record in Fig. 6.21. Let z; and z,,+; denote the measured amplitudes
at times t; and t; + nt, for integers n = 1, 2, . . .. Then, in view of (6.86i) applied
in turn to each n in the set just indicated,

21 21 22 13 Zn Zn
log =log{ =~ -=-=...~— ) =nlog =nA.
n+1 22 I3 24 Zn+1 Zn+1

Therefore,

1
A=-— log< “ ) , (6.86j)

n Zn+1

which may be used to determine the damping parameters v, ¢, and ¢, as shown
above. This rule is particularly helpful in reducing experimental measurement
error when recorded successive amplitudes are so close together that even small
measurement errorsiinthe:amplitudeandperiod will generate significant errors in
data used to compute the damping parameters.
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Figure 6.22. Graph of four typical motions EquW

of a heavily damped system. Position

Case (ii): Heavily damped motion. If { =v/p > 1, then r> = —¢> < 0 in
(6.86¢), where

g=VyV2-p2=pJ2—1<v. (6.86k)
Hence, with r = +iq in (6.86d), the general solution of (6.83) in this case is
z2(t) = e7V'(Ae? 4 Be 7). (6.861)

The constants A and B are determined by the initial data. Equation (6.861) may
also be expressed in terms of hyperbolic functions.

This motion is not oscillatory. Since ¢ < v, the damping factor e~ is dom-
inant; so, whatever initial conditions may be assigned, once the particle passes
through its relative equilibrium position, if at all, it will never do so again. The
unique null solution of (6.861) is obtained in the time

. _ log(=B/A)
o — 2q .

The viscosity in a heavily damped system is so great that the load cannot vibrate
about its relative equilibrium position; rather, it must creep slowly back to it as
t — o0.

Some typical cases are shown in Fig. 6.22. Curve 1 occurs for the initial
conditions z(0) = 0, z(0) = vy, from which —B/A = 1 and hence (6.86m) has
only the trivial solution ¢, = 0. This motion begins with a push away from the
equilibrium position and the mass can never cross it again; for, z — 0 again only
as t — oo. Curve 2 in Fig. 6.22 illustrates the case z(0) = zo, z(0) = 0. For the
general case z(0) = zo, 2(0) = v, the motion may resemble either curve 2, 3, or
4. In the last instance, the load passes through its equilibrium position only once
and then creeps gradually back to it from below. See Problem 6.62.

Case(iii):w Criticallydampedmotion; If { = v/p = 1, the general solution of
(6.86b) for which 7> = Oisu = A + Bt, where A and B are integration constants.

(6.86m)
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Thus, by (6.86a), the general solution of (6.83) for the critically damped motion is
z(t) = (A + Br)e ™. (6.86n)

As t — oo, the motion z(t) — 0. The critically damped motion, therefore, is
similar to that for the heavily damped model illustrated in Fig. 6.22. Discussion of
the motion graphs is left for the reader in Problem 6.63.

From (6.85), the damping coefficient for this case has the value

¢* =2mp =2vVmk, (6.860)

which is named the critical damping coefficient. This is the value of the damping
coefficient at which the motion loses its oscillatory, lightly damped character in
transition to a nonvibratory, heavily damped decaying motion. In view of (6.860),
the damping ratio (6.85) in the general case is the ratio of the damping coefficient
to its critical value:

(= —=—. - (6.86p)

In both the oscillatory lightly damped case { < 1 and the nonoscillatory
heavily damped case ¢ > 1, the load takes a longer time to come to rest than it
does in the critically damped case ¢ = 1. This effect is illustrated by the familiar
automatic storm-door closer. If the closer mechanism is adjusted to have light
damping, the door will want to swing through its closed equilibrium position in an
effort to oscillate, so the door will slam. If the closer is adjusted to have too much
damping, the heavily damped door will close too slowly, perhaps not at all. The
optimum case is when the closer is critically adjusted so that the door will close
as quickly as possible, without slamming. Thus, the critical damping case { = 1
describes the most efficient damping condition, because the motion is damped in
the least time.

6.11.3. Summary of Solutions for the Damped, Free Vibrational Motion

For the damped, free vibrational motions, z(t) — 0 ast — 00, so all of these
motions eventually die out. To summarize, equation (6.83) for the damped, free
vibrational motion of the load about its relative equilibrium position is character-
ized by three physical situations depending on the value of the viscous damping
ratio { = v/p = c/2mp:

¢ Lightly damped motion, ¢ < 1:
2(t) = e " (Acoswt + B sinwt), w=py1-2¢2  (cf 6.86f)
* Heavily damped motion, { > 1:

2(t) = e " (Ae?" + Be 1), qg=pJei—1. (cf. 6.861)
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¢ Critically damped motion, ¢ = 1:
z2(t) = e V(A + Bt). (cf. 6.86n)

The reader may explore the following additional elements.

Exercise 6.4. The usual solution method for linear equations with constant
coefficients adopts a trial solution z7 = Ae™. Find the characteristic equation for
A in order that (6.83) may be satisfied. Determine its roots, and thus show that the
solution of (6.83) is given by (6.86d). O

Exercise 6.5. The method based on (6.86a) may be applied more generally
in problems where the coefficients v and p? in (6.83) are functions of time. Let
z(t) = u(t)e" and find h(¢) and r2(¢) in order that (6.83) may be transformed to
an equation of the form (6.86b) for the function u(z). The solution u(¢) will now
depend on the nature of the function 7(¢); so, in general, u(¢) need not be a periodic
function. O

6.12. Steady, Forced Vibrations with and without Damping

The oscillatory motion of a mechanical system subjected to a time varying
external disturbing force is called a forced vibration. In this section, we investigate
the forced vibration of the system in Fig. 6.20 due to a steady, sinusoidally varying
disturbing force

F*(t) = Fysin Q1. (6.87)

The constant Fy is the force amplitude and the constant circular frequency €2 is
called the forcing or driving frequency.

The motion of a load induced by a time varying driving force of the kind
(6.87) is known as a steady, forced vibration; otherwise, the response is called
unsteady or transient. In general, a vibratory motion consists of identifiable steady
and transient parts. The transient part of the motion eventually dies out, and the
subsequent remaining part of the motion is called the steady-state vibration. A
disturbing force that changes suddenly by a constant value, called a step function,
and an impulsive exciting force which is suddenly applied for only a very short time,
are examples of forces for which the response is transient. Some other examples
are described in the problems. In the text, however, we shall explore only the
steady, forced vibration problem for which the equation of motion (6.82) has the
form

¥ + 2vi + p’x = Qsin Qr, (6.88)
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in which v and p are defined in (6.84) and

= E. (6.89)

m

We recall that p is the free vibrational circular frequency of the undamped oscil-
lator; it is the intrinsic frequency of the system. Therefore, for future clarity and
brevity, p is called the natural (circular) frequency.

The general solution xy of the homogeneous equation associated with (6.88)
when Q = 0 is given by (6.65b) when v = 0, and by (6.86f), (6.861), or (6.86n),
accordingas0 < ¢ =v/p < 1,¢ > 1,or { = 1, respectively, as summarized ear-
lier (page 157). Consequently, the general solution of (6.88) is obtained by adding
to the appropriate homogeneous solution xy = e u(¢) a particular solution xp
of (6.88) that gives the effect of the external force.

A particular solution of (6.88) may be obtained by the method of unde-
termined coefficients. Accordingly, we take xp = Cy sin Q¢ 4+ C, cos Q2f, where
Q # p is the forcing frequency and the constants Cy, C; are chosen to satisfy
(6.88) identically. Substitution of x p into (6.88) yields

[(p* — Q)C1 — 20QC; — Q] sinQt + [2vQC) + (p* — Q%)C;] cos Qt =0,

which holds identically for all  if and only if the coefficients vanish. This provides
two equations for the constants Cy and C,, which yield

_ Xg(1 —£2) _ —2Xs&¢
(1— €22+ (260 2T a—er e

wherein, by definition,

Ci

(6.90a)

Xs

F Q
0 ly (6.90b)
p

Q
Pk T
and ¢ is the viscous damping ratio defined in (6.86p). Notice that X is the static
deflection of the spring due to Fy, and £ is the ratio of the forcing frequency to the
natural frequency.

The general solution of (6.88) is the sum x(¢) = xy + xp. This gives the
forced vibrational motion

x(t) = e "'u(t) + C, sin Qt + C, cos Qt, (6.90c)

provided that €2 # p. The first term in (6.90c) is the transient part of the motion.
It describes the damped, free vibrational part of the motion for which u(t) is
identified in (6.86f) for the lightly damped problem, in (6.861) for the heavily
damped case and in (6.86n) for the critically damped problem. In any event, the
transient, damped part of the motion (6.90c) vanishes as t — 00, and the motion
attains the steady-state simple harmonic form described by the last two terms.
When v = 0, however, u(t) is the simple harmonic solution of (6.68); and this
partrof thesundamped; forcedsvibrational motion (6.90c) does not die out, it is
not a transient motion. Nevertheless, the part of the undamped, forced vibrational
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motion described by the last two terms in (6.90c) is still named the steady-state
part. Thus, in every case the effect of the sinusoidal driving force is to superimpose
on the free, damped or undamped vibrational motion a simple harmonic motion
whose frequency €2 equals that of the driving force (6.87) and whose steady-state
amplitude, in accordance with (6.90a), is defined by

JA =21 2g0)?

See (6.71). The steady-state amplitude is constant for a fixed value of 2, hence &;
but it grows larger as £ — 1, that is, as the forcing frequency 2 approaches the
natural frequency p.

The foregoing results are used to study the ideal undamped, and the lightly,
heavily, and critically damped vibration problems. We begin with the undamped
case.

H=,/C}+C? (6.90d)

6.12.1. Undamped Forced Vibrational Motion

The equation for the undamped forced vibrational motion of the load is ob-
tained from (6.88) with v = p¢ = 0:

i+ p*x = Qsin Q. (6.91)

We recall (6.90a) and (6.90d) to obtain (C, C,) = (H, 0); then (6.90c), in which
u(t) is the simple harmonic solution of (6.68), yields the general solution of (6.91):

x(t) = Acos pt + Bsin pt + H sin Qt, (6.92a)

where, with (6.90b),

o Fo/k  Xs Q
H_p2(1—§2)_1~—§2_1—§2’ g‘_p;él. (6.92b)
The motion (6.92a) is the superposition of two distinct simple harmonic
motions. The first two terms, which contain the two integration constants, represent
an undamped, free vibration of circular frequency p. The third term is the steady-
state, forced vibrational contribution; it depends on the driving force amplitude in
(6.92b) but is independent of the initial data and has the same circular frequency
Q as the disturbing force. In general, the two motions have different amplitudes,
frequencies, and phase. Therefore, their composition, and hence the motion, is not
periodic unless the ratio £ = €2/ p is a rational number, or unless A and B are zero.
Thus, the undamped, forced vibrational motion (6.92a) usually is a complicated
aperiodic motion.
Suppoesegforexamplesthatithe system is given an initial displacement x(0) =
xp and velocity x(0) = vo. Then (6.92a) yields A = xp and B = (v — H2)/p,
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and the undamped, forced vibrational motion is described by
v
x(t) = xgcos pt + 2 sin pt + H(sin Qt — & sin pt). (6.92¢)
p

Even if the system were started from its natural rest state so that xo = vy = 0, the
solution x(t) = H(sin Qr — £ sin pt) still contains both free and forced vibration
terms. This motion generally is not periodic. Suppose, however, that the initial data
may be chosen so that xo = 0 and vy = HS2 for a fixed forcing frequency. Then
A = B = 0 and the motion (6.92a) reduces to the steady-state, periodic motion
x(t) = H sin Q1.

The effects of damping and the critical case when & = 1 will be discussed
momentarily. First, we consider an example that illustrates the application of these
results to a mechanical system.

Example 6.15. The equation for the undamped, forced vibration of the pen-
dulum device described in Fig. 6.19, page 150, is given in (6.81e). Solve this
equation for the case when both the motion of the hinge support and the angular
motion of the pendulum are small. Assume that the pendulum is released from rest
at a small angle ¢y.

Solution. The differential equation (6.81e) describes a complicated nonlin-
ear, undamped, forced vibrational motion of the pendulum. To simplify matters,
we consider the case when the angular placement is sufficiently small that terms
greater than first order in ¢ may be ignored. Then (6.81e) simplifies to

X092

14

b+ p'e = sin Q, (6.93a)

where p? = g/¢. This equation has the same form as (6.91); it describes the small,
undamped, steady forced vibrational motion of the pendulum. For consistency
with the small motion assumption, however, we consider only the case for which
the motion of the hinge support O also is small, so that xo /¢ < 1. Because the
amplitude of the disturbing force in (6.93a) varies with its frequency, for small
motions ¢(¢), the range of operating frequencies also is limited.

The general solution of (6.93a), with Q = x, Q?/¢, may be read from (6.92a):

¢(t) = Acos pt + Bsin pt + H sin Qt, (6.93b)
in which A and B are constants and the steady-state amplitude, by (6.92b), is

oo Y08
o1 -2

The assigned initial data determine the constants in (6.93b),

$0)=A=¢y,  ¢0)=Bp+HQ=0, (6.93d)

£= g £1. (6.93c)
p
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which then yields the solution for the small angular motion of the pendulum:

2
¢(t) = ¢ cos pt + Z()lco——ggz) (sin Q¢ — & sin pt). (6.93¢)
It is evident that this small motion solution is meaningful only for sufficiently
small values of the driving frequency ratio &; otherwise, the smallness of ¢(¢) is

violated. O

6.12.1.1. The Resonance Phenomenon

As ¢ = Q/p — 1, the motion (6.92¢) in response to the driving force grows
increasingly larger, and at £ = 1, its amplitude (6.92b) is infinite. The condition
& = Q/p =1 when the forcing frequency is tuned to the natural frequency of
the system is known as resonance. It is useful to examine the solution for the
undamped motion at the resonant frequency.

Let x*(¢) denote the motion at the resonant frequency Q2 = p, and recall
(6.92b). Then from (6.92c), we evaluate x*(t) = limg_, , x(¢) to obtain

x*(t)=(x0—Kt)cospt+l(vo+K)sinpt, KEE-XS:ﬂ.

)4 2 2mp
This is not a steady-state motion,; its amplitude increases continuously with time,
so the vibrations grow increasingly larger. Although the condition of resonance
does not occur instantaneously, the motion of the load may grow excessively and
exceedingly large in a short time.

6.12.1.2. Steady-State Amplitude Factors

Two kinds of dimensionless amplitude factors arise often in forced vibration
problems, both characterize the steady-state response of the system in terms of the
frequency ratio. One of these amplitude factors, defined by

1
=1 o

called the magnification factor, appears in the steady-state amplitude relation
(6.92b). The magnification factor is the ratio of the steady-state dynamic response
amplitude H to the static amplitude X; of the system, hence og = H/ X is a
measure of the dynamic displacement compared to the static displacement of the
load.

A different dimensionless amplitude factor, defined by

o (6.94a)

52
oy = 1_—52 ) (694b)
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Figure 6.23. Response amplitude factor o (&) for steady-state forced vibrations without damping as a
function of the system frequency ratio £ = Q/p.

appears in the steady-state amplitude relation (6.93c) for the forced vibration of the
pendulum. Since ¢£ describes the small horizontal motion of the pendulum bob,
we see that HZ is its maximum value in the steady-state motion ¢, = H sin Q.
Thus, the amplitude factor in this case, according to (6.93c), is the ratio of the
dynamical amplitude HZ of the bob to the amplitude x¢ of the support; hence «;
is a measure of the dynamical response of the system.

Graphs of the amplitude factors (6.94b) and (6.94a) are shown in Figs. 6.23
and 6.24, respectively. These response graphs are independent of the particular
physical problems in which these amplitude factors may arise. The general physical
relevance of (6.94b), however, is readily illustrated in connection with the driven
pendulum example.

The map of (6.94b) is shown in Fig. 6.23. Accordingly, at small operating
frequencies &, the amplitude factor «; also is small, both near zero. Thus, the
influence of the vibrating support on the small amplitude oscillations of the pen-
dulunvissinsignificantyand-the:motionsini(6.93b) is essentially a simple harmonic
motion of natural frequency p. Moreover, for £ < 1,«; > Oand H = xpa;/¢ > 0.
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Figure 6.24. Response amplitude factor og(§) for steady-state forced vibrations without damping as a
function of the system frequency ratio § = Q/p.

Therefore, the steady-state motion ¢, = H sin Q¢ of the bob is in phase with the
driving force (6.87); that is, the bob’s motion is in the direction in which the sup-
port is moving. This is characterized by the solid left-hand curve in Fig. 6.23.
At resonance, the forcing frequency is tuned to the natural frequency at & = 1,
and therefore the amplitude factor (6.94b), and hence the amplitude of the pen-
dulum motion, becomes infinite, as indicated by the vertical line in the response
graph. But this is not an instantaneous effect, rather it indicates a growth in the
amplitude in time, growth which eventually violates the small amplitude motion
assumption used in the solution. When & > 1, the amplitude factor «; < 0, and
hence H = xpo /€ < 0also. Thus, the steady-state response of the pendulum, the
part ¢, = H sin Qt = |H|sin(2t £ ), is simple harmonic and 180° out of phase
with the driving force (6.87); that is, the bob’s motion is opposite to the direction
in which the support is moving. This case is represented by the dotted response
curve in Fig. 6.23. At high operating frequencies for which & > 1, oy — —1; that
is, H - —x¢o /L. Because xp < ¢, the high frequency, steady-state dynamical
amplitude of the pendulum swing will be small, and the steady-state pendulum
motion (6.93b) is a high frequency, simple harmonic vibration, but 180° out of
phase with the motion of the support. For graphical convenience, it is customary
to plot the absolute value of the amplitude factor. When this is done for a4, the
dotted curve in Fig. 6.23 is transformed into its mirror reflection shown as the solid
right-hand curve above it.

Interpretation of the general physical relevance of the magnification factor
(6:94a)initsrelationtortheresponsesgraph shown in Fig. 6.24 is a bit different. In
accordance with (6.92b), for a small operating frequency the magnification factor
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ap ~ 1, as shown in Fig. 6.24. This means that the steady-state motion of the mass
shown in Fig. 6.20 has an amplitude equal to the static displacement of the spring
duetoaforce F. The motion is in phase with the driving force, so the mass moves in
the direction of this force. As& — 1 atresonance, the amplitude grows indefinitely
great, as described earlier. Beyond resonance £ > 1; so, the steady-state motion in
(6.92a) is out of phase with the driving force, and hence the mass in Fig. 6.20 moves
in a direction opposite to the disturbing force. Under a high frequency driving force
for which £ — oo in Fig. 6.24, the steady-state amplitude response a(§) — 0,
and hence the steady-state amplitude in (6.92b) approaches zero. Therefore, the
high frequency vibration of the supporting structure has virtually no effect on the
motion of the system, and the mass in Fig. 6.20 remains essentially stationary.

Of course, some sort of damping or friction is always present in real me-
chanical systems. Damping effects in the forced vibration of a load are studied
next.

6.12.2. Steady-State Vibrational Response of a Damped System

When damping is present, the free vibrational part of the motion, the first
term in (6.90c) called the transient state, eventually dies out, and the vibrational
motion thus converges toward a harmonic motion having the same frequency as
the disturbing force, the steady-state heartbeat of the system. In consequence, only
the steady-state part of the motion (6.90c) of a damped system need be considered.

Let x, denote the steady-state solution. Then by (6.90c)

Xo = Hsin(Qt — 1), (6.95a)
where H is defined in (6.90d) and, from (6.90a), the initial phase A is given by
C, 28¢
tanh = —— = . 6.95b
an c g2 ( )

Clearly, for £ = 1, A = 90° at resonance; and in this case, when Qt = /2, F* =
Fy in (6.87) and x, = 0 in (6.95a). Hence, at resonance, the vibrating body in
Fig. 6.20 is moving through its mid position in its steady-state motion at the same
instant when the driving force is at its greatest value. Notice that the response
amplitude H in (6.90d) does not depend on any initial data. Thus, regardless of
how the system may be set into motion initially, after a time, it settles down to the
steady-state motion (6.95a) whose amplitude (6.90d) and phase (6.95b) depend
upon the damping and frequency ratios.
The amplitude factor defined by

1 H
- (6.95¢)

Ji_erraecr X

israsmeasureof therxdynamicresponsesritis the ratio of the dynamic amplitude H
to the static spring deflection X ; of the load due to the maximum disturbing force

o
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Figure 6.25. Magnification factor as a function of the frequency ratio £ for various values of the damping
parameter ¢ in a forced vibration of a system.

Fy. Notice that when ¢ = 0, @ = || in (6.94a), and hence « is also known as
the magnification factor. The response curves corresponding to (6.95c) for various
values of the damping ratio are shown in Fig. 6.25. The curve for { = 0is the same
as the plot of o] in Fig. 6.24.

At low frequencies, £ = €2/ p is very close to zero, and (6.95c) shows that
is very nearly equal to 1 in Fig. 6.25. In this case, the disturbing force has such
a low frequency 2 in comparison with the undamped natural frequency p that it
behaves very nearly as a static dead load; hence H is nearly the same as the static
response to the disturbing force: H = X; = Fy/ k, very nearly. Notice by (6.95¢)
that for £ = 1, the curve for { = % yields a = 1. This is the emphasized point on
the resonance line £ = 1 in Fig. 6.25.

Athigh frequencies, & >> 1, and (6 95c¢) shows that the dynamic response am-

‘ pproaches Zero as& — o0in Flg 6.25.

1is instance changes so rapidly that the
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mass cannot respond but slightly, though at the same frequency, in accordance
with (6.95a). Figure 6.25 thus shows that for very small or very large values of &,
the effect of any sort of damping is insignificant.

At the resonant frequency, the forcing frequency € is tuned to the natural
frequency p so that £ = 1. Then (6.95¢) gives H = X;/2¢ = Fy/2¢k, (6.95b)
yields A = 7 /2 for the angle by which the disturbing force F* in (6.87) leads the
steady-state motion x, in (6.95a), which becomes

F
Xy = —Z‘% cos pt. (6.95d)

Hence, if the damping ratio is small, the amplitude of the steady motion may be-
come seriously large when € is close to p. Resonance in the undamped system
corresponds to ¢ = 0 in Fig. 6.25. The effect of damping is to reduce the response
amplitude, and at the resonant frequency ratio & = 1 the reduction may be espe-
cially significant. Thus, the intensity of the resonant motion may be substantially
reduced by the introduction of damping in the system.

The peak magnification in the damped motion, however, does not occur at
& = 1. For fixed values of ¢ and p, the maximum magnification occurs when &
has the value

£ =/1-2¢2 (6.95¢)

This is known as the damped resonant frequency ratio and Q* = p&* is called the
damped resonant forcing frequency. From (6.95¢), the peak frequency Q* occurs
at a ratio £€* which is somewhat smaller than 1, depending upon the degree of
damping.

At the damped resonant frequency ratio £*, the maximum dynamic amplitude
is H* and the magnification factor (6.95c) has the maximum value

. 1 H*
= — = —,
201 =¢2  Xs

which depends on the damping ratio. The locus of these maxima, indicated by the
dotted curve in Fig. 6.25, shows that the peak value ¢* increases as the damping
ratio ¢ decreases. Since ¢ usually is much less than 1, (6.95¢) shows that £* = 1;
that is, the value of the lightly damped resonant forcing frequency 2* differs very
little from the undamped, free vibrational frequency p of the system. In this case,
from (6.95f), the maximum dynamic amplitude at the damped resonant frequency
is H* = X;a* = X, /2¢, very nearly. For small damping the amplitude is greatest
near the resonant frequency ratio £ = 1. As ¢ increases, o* decreases and shifts
toward the left until it reaches a* = 1 at £* = 0 for ¢ = +/2/2. Afterwards, the
peakort = hisarelativemaximumwaluefor all 7 > +/2/2, and (6.95f) is no longer
applicable.

(6.951)
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6.12.3. Force Transmissibility in a Damped System

The vibrating load in its steady-state obviously transmits force to the sup-
porting structure of the system. Therefore, it is important to have a measure of
the intensity of this force. In this section, a certain transmissibility factor is intro-
duced, and effects due to variation in the damping and in the operating frequency
are discussed.

In the steady-state motion (6.95a), the spring and damping forces for the
mechanical system in Fig. 6.20 are given by

Fs¢ = kx, = kH sin(2t — 1), Fp =cx, = cQH cos(2t — 1), (6.96a)

whose amplitudes are Fs = kH and F}, = ¢HQ. Each force in (6.96a) contributes
to the total force transmitted to the support: Fs + Fp = Fysin(Qt — A + )
where tan ¢ = ¢/ k and the maximum impressed force, denoted by Fr, is defined
by

Fr=,/F}+ F} = H/R? + Q2 (6.96b)

Then the ratio of the total impressed force to the maximum value of the disturbing
force Fy = kX, defines the transmission ratio Tg, also known as the transmission
factor or the transmissibility. Thus, with (6.95c), we find the transmission ratio

R (6.96¢)

_Q_\/ 1+ (280)
TR V-t

The graph of the transmission ratio as a function of the frequency ratio & =
Q/p for various values of the damping ratio ¢ = ¢/2mp is shown in Fig. 6.26.
The greatest transmission to the supporting structure for small damping occurs
at resonance, and the effect of increased damping is to decrease the amplitude
of the transmission and shift it toward the left of the resonant frequency line
& = 1. Notice, however, that a transmission factor T = 1 occurs at a universal
frequency ratio & = +/2 (shown as the small circle in Fig. 6.26), regardless of
the amount of damping. For & > +/2, the transmission ratio T < 1, and hence
the transmitted force is smaller than the applied disturbing force. Moreover, the
transmission ratio actually is made smaller by decreasing the amount of damping
at high operating frequencies. Therefore, less vibrational force is transmitted to
the supporting structure. As a result, smoother operation may be expected. At very
low operating frequencies, the transmissibility is again close to 1 for all values of
the damping. Otherwise, Fig. 6.26 shows that increasing the amount of damping
¢ when 0 < & < +/2 decreases the maximum transmitted force. In summary, if
£ < /2, Tr > 1 and greater damping is recommended for smoother operation of
the system; however, when & > /2 Fg-<=1 and decreased damping will result in
smoother operation, that is, the effect of the transmitted force intensity is reduced.
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Figure 6.26. Transmissibility as a function of the frequency ratio & for various values of the damping ratio
¢ in the forced vibration of a system.

For & = /2, Tg = 1 for every damped (linear) mechanical system. Mechanical
design with these ideas in mind is known as vibration isolation.

6.13. Motion under a General Nonlinear Force f(x, x)

So far, we have considered free and forced vibrations of damped and un-
damped systems subjected to forces that are linear in x and x. Here we study the
motion x(¢) of a particle under a general nonlinear force f = f(x, X) per unit
mass. This total force may include inertial forces as well as other sorts of linear
and nonlinear contact and body forces. The equation of motion is

X, X). (6.97)

ns can be obtained, this is not always
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possible, and the analysis of (6.97) often is difficult. Some readily integrable
situations arise when f(x, %) has special properties. The reader will see eas-
ily, for example, that for a nonlinear force of the form f(x, x) = g(x)h(x) for
smooth functions g(x) and h(x), the equation of motion (6.97) has the first in-
tegral [h~!(x)dx? =2 [ g(x)dx + C, where C is a constant. Another example
follows.

6.13.1. Special Class of Nonlinear Equations of Motion

A variety of dynamical systems are characterized by an integrable nonlinear
equation of motion (6.97) of the form

.2 ‘I(x)

) 6.98
q(x)% + 2x I 8™ (6.98a)
for any smooth functions g(x) and g(x). This equation may be written as
d |1
- [Exzqm] = g(v), (6.98b)
which is twice integrable. We first derive
#g(x)=2 / g(x)dx + C = p(x), (6.98¢)
where C is a constant, and thus obtain the velocity function
v(x) =x(x) = M (6.98d)
q(x)

A second integration yields the travel time in the motion:

t= :I:/ —q(i)dx + 1o, (6.98¢)
p(x)

to denoting the initial instant. In principle, this determines the nonlinear motion
x(t); then v(z) can be found from (6.98d). The inversion of (6.98¢), however, may
require numerical integration. Two explicit examples are provided in the following
exercises.

Exercise 6.6. The motion of a particle free to slide on a smooth parabolic
wire y = %kx2 that rotates about its vertical y-axis with a constant angular speed
is described by the nonlinear equation

A+ E2xHi + Qx + k2xi? =0,

where k and €2 are constants. Derive a first integral for x(x). (]
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Exercise 6.7. The motion of a dynamical system is governed by the equation
(h* +r*0%)0 +r*00 + krf cos 6 = 0,

where k, k, and r are constants. The system is initially at rest at & = 0. Derive an
integral giving the travel time in the motion. O

6.13.2. Radial Oscillations of an Incompressible Rubber Tube

Nonlinear equations of the type (6.98a) arise often in physical problems. An
important example in nonlinear elasticity theory, discovered by J. K. Knowles in
1960, concerns the finite amplitude, free radial oscillations of a very long cylin-
drical tube made of an incompressible, rubberlike material. The tube has an inner
radius r; and outer radius r; in its undeformed state and is initially inflated uni-
formly by an internal pressure. A purely radial motion of the tube is induced by its
sudden deflation, so that the radial motion of any concentric cylindrical material
surface of radius R in the deformed state at time ¢ is described by R = R(r, 1),
where r is the radius of the corresponding undeformed cylindrical material sur-
face. Let R, R; respectively denote the inner and outer radii of the deformed tube
surfaces at time 7. Because of the incompressibility of the material, these radii
are related by R? — R? = r? — r?. Hence, the motion is determined completely if
R1(t) is known. It proves convenient to introduce the dimensionless ratios

Ry(t r2
x(t) = ;f ), L= 722 —1. (6.992)
1

Knowles found for arbitrary rubberlike materials that the free radial motion of the
tube is described by the nonlinear differential equation

u—+x

where h(x, ) is a known function that depends on the constitutive character of
the rubberlike material. Notice that while this problem concerns the motion of a
highly deformable body, the equation of motion actually involves only the motion
of a particle on the inner surface of the tube. All other particles on the inner surface
have the same radial motion.

At first glance, equation (6.99b) certainly appears formidable. Upon multi-
plication by x, however, it is seen that (6.99b) assumes the form (6.98a) and may
be written as

xlog (1+%)x+ (10g(1+%> _ K 2)x2+h(x,,u)=0, (6.99b)

d (1.,, H“ —
E (Ex X log (1 + F)) + Xh(x, M) =0. (6'99C)

This yields the first integral

x2x? log (1 + %) = —2/xh(x, wydx + C = p(x). (6.994d)
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The integration constant C depends on the specified initial data x(0) = xg, %(0) =
vg. Equation (6.99d) thus determines the radial “velocity” function

v(x) =x(x)== (6.9%)

in which x = R, /ry, hence [v(x)] = [T~']. The analytical properties of the func-
tion p(x) show that the phase plane curves described by (6.99¢) are closed and that
(6.99¢) yields exactly two values x = a, x = b > a for which v(a) = v(b) = 0;
so the motion is periodic. See the referenced paper by Knowles for details.
Integration of (6.99¢), with the appropriate sign chosen to render ¢ > 0, yields

the travel time
*dx
t = —_ (6.991)
X0 U(x)

The finite periodic time t of the purely radial oscillations of the tube, the time
required for the tube to pulsate from x =a to x = b and back again, is thus

determined by the formula
b
d
r=2 / ad (6.992)

v(x)’

It turns out that the exact solution of (6.99g) may be obtained for special kinds
of rubberlike materials. Without getting into these matters, however, we see that
these general results are useful because they provide physical insight into what is
otherwise a very difficult dynamical problem. Some additional simpler examples
may be found in the problems at the end of this and subsequent chapters. (See
Problems 6.68 and 6.69.) Similar ideas are applied in Chapter 7 to determine
exactly the motion and period of the finite amplitude oscillations of a pendulum.

6.14. Infinitesimal Stability of the Relative Equilibrium
States of a System

In other problems for which the exact solution of (6.97) is not possible,
a variety of analytical and graphical methods described in other works may be
used to construct an approximate solution or to study various physical aspects of
the motion of the dynamical system. An important physical attribute of particular
interest is the infinitesimal stability of the relative equilibrium states of a dynamical
system governed by (6.97).

Relative equilibrium solutions of (6.97), if any exist, are the time independent
solutions xg of the equation

fCg,0)=0. (6.100)
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(a) Stable (b) Neutrally Stable (¢c) Unstable

Figure 6.27. Schematic illustrating the concepts of (a) infinitesimal stability, (b) neutral stability, and
(c) instability.

This provides the positions xg at which the mass is at relative rest. In the special
case when f is linear in x, there is only one equilibrium solution of (6.100), but for
nonlinear systems there may be many relative equilibrium positions. In particular,
if f(xg, 0) is a polynomial in xg, there are as many equilibrium positions as there
are real roots of (6.100); but some of these may not be stable.

The question of how the system behaves if disturbed only slightly from a
relative equilibrium position is of special interest. If the body either returns even-
tually to the relative equilibrium position xg, or oscillates about xz so that its
motion always remains in a small neighborhood of xg, the relative equilibrium
position is said to be infinitesimally stable, or briefly, stable. For greater clarity,
the term asymptotically stable is also used to characterize the relative equilibrium
position in the case when the body returns eventually to this state. If the body,
following its arbitrary small disturbance from an equilibrium position, remains at
a fixed small distance from the relative equilibrium position, the equilibrium state
is called neutrally stable. On the other hand, if the body moves away indefinitely
from xg, the relative equilibrium state is called unstable. These three situations
are illustrated in Fig. 6.27 for the small disturbance of a heavy particle from its
equilibrium position xz. The particle will perform small oscillations indefinitely
about the equilibrium state at the lowest point of the bowl in Fig. 6.27a, and hence
this state is infinitesimally stable. Now suppose the bowl contains water, then the
oscillations eventually will die out as the heavy particle settles down to xg; in this
instance xg is asymptotically stable. If the particle is given a small displacement
from xg on the horizontal plane surface in Fig. 6.27b and released from rest, it
will remain there; therefore, the equilibrium state xg is neutrally stable. Finally,
in Fig. 6.27c, if the particle is disturbed only very slightly from its equilibrium
position at the vertex of the inverted bowl, it will move away indefinitely from xg,
so this position is unstable.

To investigate the motion in the neighborhood of a relative equilibrium posi-
tion xg, we write

x(t) = xg + x (@), (6.101)

where x () is a small disturbance from xg, compatible with any constraints on x,
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so that * = x also is a small quantity of the same order. The function f(x, x) is
then expanded in a Taylor series about xg to obtain to the second order in x and ¥,

. af (x, x) af(x, x)| . .
fx, %)= fxg,0)+ f—a— + s , X+ 0% ).
x|y, dax 5
Thus, recalling (6.100) and (6.101), introducing
af (x, af (x, %
__YwHp g YO (6.102)
ax |, ax |,

and neglecting all terms of order greater than the first in x and ¥, we thus obtain
from (6.97) the linearized differential equation of motion of the body about the
relative equilibrium position xg:

X+ax+Bx=0. (6.103)

The relative equilibrium position will be stable if and only if the solution x (¢)
of this equation remains bounded for all time ¢ or approaches zero as t — oc.
Otherwise, the initial infinitesimal displacement grows with time and eventu-
ally violates the smallness assumptions leading to (6.103); so, the position xg is
unstable.

We recognize that (6.103) is similar to (6.83) for the damped, free vibrations of
a body about its relative equilibrium state. Here, however, the constant coefficients
obtained from (6.102) are arbitrary; they may be positive, negative, or zero, so all
possible solutions of (6.103) must be examined. The usual trial solution 7 = Ae*
of (6.103) yields the characteristic equation

AM+ar+B=0, (6.104a)

which has the two solutions

=g (3)2 B dp=—o- (3)2 —B. (6.104b)

2 2 2 2
Therefore, the general solution of (6.103) is
x() = Areh’ + Age™, (6.104c)

in which A, A, are arbitrary constants. The physical nature of the solution, and
hence the stability of the relative equilibrium positions, is characterized by the
signs of o and B, which determine the roots A; and X,. There are several cases to
explore.

1. Roots Ay, A, are real and negative. Then (6.104c) shows that x () — O as
t — oo. Therefore, the equilibrium position is asymptotically stable. For
real roots (6.104b), («/ 2)? > B must hold. Moreover, o > 0 is necessary
for.a-negative 500t-Ay-1f B.=0.0r 8 < 0, 1; will be non-negative, con-
trary to the initial requirement. Consequently, it is necessary and sufficient
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that o > 0, (01/2)2 > B > 0 hold. Hence, @ > 0, 8 > 0 in (6.104a) imply
asymptotic stability.

2. Roots Ay, Ay are real and positive. Then () — oo ast — oo in (6.104c),
and hence the equilibrium position is unstable. Real roots require (a/2)? >
B. For A, > 0, @ < 01is necessary, and hence 8 = 0 or 8 < 0 cannot hold.
Therefore, it is necessary and sufficient that @ < 0, («/2)* > B > 0 hold.
Thus, ¢ < 0, B > 0in (6.104a) imply instability.

3. Roots A; > 0, A, < 0, or conversely. The second term in (6.104c) — 0 and
the first — o0, or conversely; so the relative equilibrium position is unsta-
ble. Real roots require (o /2)*> > B;and B # 0, otherwise A; = 0. Case 1
and Case 2 show that 8 > 0, @ > 0 and 8 > 0, @ < 0 cannot satisfy the
assigned conditions. Therefore, 8 < 0 must hold, and the conditions on A1,
A, are then satisfied for all real «. So, B < 0, « arbitrary imply instability.

4. Roots A1, A, are complex conjugates. Now g > (o/2)> > 0 must hold and
(6.104c) may be written as

X(t) — e—ott/2 (Aleirt + Aze—irt) , (6104d)

where r = (8 — (a/2)*)'/? is real and positive. If & > 0, we have Case
I: @ > 0, B > 0, and hence the equilibrium position is asymptotically
stable. Notice that x(t) —> 0 as t — oo. If @ = 0, the motion (6.104d)
is simple harmonic, and hence the relative equilibrium position is
infinitesimally stable. Finally, when o < 0, we have Case 2: a <0,
B > 0, and x(¢#) — oo with ¢. The equilibrium state is unstable.

5. For g =0, (6.104b) yields A; =0, A, = —«, and hence the motion is
given by

x(@) = A+ Are™™. (6.104¢)

When o > 0, x — A; as t — oo; the equilibrium position is neutrally
stable. When o < 0, x(¢#) — oo with ¢, and the equilibrium position is
unstable. The degenerate case when o = 0 also yields § = 0 in (6.103);
so x(t) = A + Ajt. The equilibrium state is again unstable.

In summary, for all real or complex characteristic roots (6.104b), the infinites-
imal stability of the relative equilibrium states is characterized by the following
four circumstances expressed in terms of the infinitesimal stability parameters o
and B, the coefficients (6.102) of the linearized equation of motion (6.103). The
relative equilibrium position is

(a) infinitesimally stable when ¢ = 0, B > 0,
(b) asymptotically stable for « > 0, 8 > 0,
(c) neutrally stable for o > 0, 8 =0,

(d) unstable for all remaining cases.

(6.105)
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These results also may be conveniently arranged in a matrix shown below.

al|B—>|>0|=0]| <0
>0 A N U
=0 S U U
<0 U U U

Notice that the system is always unstable when either « or f is negative.

6.14.1. Stability of the Equilibrium Positions of a Pendulum

We now investigate the infinitesimal stability of the (relative) equilibrium
positions of a simple pendulum whose finite angular motion is described by
(6.67b):

6 = —p?sinb. (6.106a)

This has the form of (6.97) in which f(6,8) = —p?sin@ is independent of 6.
Hence, by (6.102), @ = 0 and B8 = p? cos O at an equilibrium position 6. Thus,
from (a) in (6.105), O is a stable equilibrium position if and only if 8 > 0.

The (relative) equilibrium states, by (6.100), are given by

f6g) = —p*sinbg = 0, (6.106b)

also evident from (6.106a). This yields infinitely many equilibrium positions g =
+nm,n=0,1,2,.... Butonly two, 8 = 0, 7, are physically distinct positions.
For 0 =0, B = p?> > 0, and for 0 =7, B = —p? < 0. Hence, O = 0 is an
infinitesimally stable equilibrium position, whereas 8z = 7 is unstable.

To see this somewhat differently, recall (6.101), write 8(¢) = 0 + x(¢), and
then linearize equation (6.106a) to obtain

X% + (p*cosbp)x =0. (6.106¢)
This corresponds to the linearized equation (6.103). Specifically, then
i+pix=0forfp =0, j—p’x=0forfg=m (6.106d)

We know that the first of (6.106d) yields a stable simple harmonic solution for
any given initial data, whereas the second yields a solution that grows exponen-
tially with time. Hence, we again conclude that 6 = 0 is an infinitesimally stable
equilibrium position, while 6 = 7 is unstable.

The physical nature of the results is evident. Any small disturbance of the
pendulum bob from its lowest point at 8z = 0 results in a small oscillation about
this equilibrium position. Any infinitesimally small disturbance from its extreme
verticalposition,0gs=wyontheothenhand, grows increasingly larger and quickly
violates the smallness assumption leading to (6.106c).
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6.14.2. Application to Linear Oscillators

The foregoing discussion has focused on infinitesimal stability for nonlinear
problems in the class defined by (6.97), but the same infinitesimal perturbation
procedure can be applied to all sorts of dynamical systems, including problems
in which f(x, x) is linear in either one or both variables x and x. For illustra-
tion, let us reexamine the stability of the equilibrium positions of the rotating
spring-mass system studied in Section 6.9.2, page 145. Equation (6.77b) gives
the equation of motion in the form (6.97): ¥ = f(x,x) = ap2 — p*(1 — pP)x,
independent of % and linear in x. Equation (6.100) yields the evident equilib-
rium position xg = a/(1 — n?), the same as (6.77g). The infinitesimal stability
parameters in (6.102) are « = 0, B = — df (x)/dx|,, = p*(1 — n?). Therefore,
the equilibrium position xg is infinitesimally stable if and only if 8 > 0, that is,
when and only when n = w/p < 1. This is precisely the result derived earlier for
arbitrary amplitude oscillations consistent with obvious constraints but based on
the familiar nature of equation (6.77i).

The free vibrational motion of the general linear damped oscillator is de-
scribed in (6.83), and this equation is not restricted to infinitesimal motions z(¢)
from the equilibrium position zz = 0. In view of the physical nature of the damp-
ing and spring coefficients, the infinitesimal stability parameters in (6.103) are
positive; we identify @ = 2v > 0 and 8 = p? > 0. Therefore, we know from in-
finitesimal stability analysis that the equilibrium position zg = 0 is asymptotically
stable. In fact, it is physically clear that the system, when disturbed by any amount
consistent with design constraints, will return eventually to its equilibrium posi-
tion. If @ = 0, the motion about the equilibrium state will be stable for 8 = p* > 0,
as learned earlier.

It is not necessary to recall the details of the formal infinitesimal stability
analysis of the equilibrium states of a dynamical system. In special problems, it
is straightforward to simply determine the equilibrium states from the equation
of motion, introduce a disturbance like (6.101) for an infinitesimal perturbation
from these states, and then carry out a linéarized analysis of the equation of mo-
tion. This process leads to an incremental equation of motion similar to (6.103)
from which the stability may be determined in accordance with (6.105). For fur-
ther study of vibration problems and stability analysis see the referenced text by
Meirovitch.

6.15. Equations of Motion Relative to the Earth

To investigate effects of the Earth’s rotation on the motion of a particle, we
recall the equation of motion of a particle relative to the Earth:

ma, = F —2mQ x v,. (cf. 5.102)
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Figure 6.28. Motion of a particle relative to
the Earth.

Let the Earth frame ¢ = {O;i;} be oriented so that i is directed southward and
j is eastward in the horizontal plane tangent to the Earth’s surface at the latitude
A, the angle of elevation of the Earth’s axis above the horizontal plane, as shown
in Fig. 6.28. Then k is normal to the surface, directed skyward. Referred to ¢, the
angular velocity of the Earth frame is

Q = Q(— cos Al + sin AK). (6.107)
Hence, the Coriolis acceleration is given by
20 x v, = —2Qysin A + 2Q(x sin A + zcos A)j — 2Q2ycosAk,  (6.108)

wherein v, = 6x/8t and x(P, t) = xi + yj + zk is the relative position vector.
Finally, the total force acting on the particle P is F = T + W, where W = —mgk
is its apparent weight and T = Qi + Rj + Sk is the total of all other contact and
body forces thatacton P. Then, use of (6.108) in (5.102) yields the scalar equations
for the particle’s motion relative to the Earth:

mi = Q +2mQysin A, (6.109)
my = R —2mQ(x sinA + ZcosA), (6.110)
mz =S8 —mg+ 2mQycos . (6.111)

Some interesting Coriolis effects of the Earth’s rotation may be read from
these equations, or more directly from (6.108). When a particle is travel-
ing eastward so that v, = yj, for example, the Coriolis force —2m$2 x v, =
2mQy(sin Ai+ cos Ak) for A > 0 in the northern hemisphere drives the particle
toward the right, southward and upward; and at the same latitude in the southern
hemisphere for which A < 0, it drives the particle toward the left, northward and
upward. Therefore, in the moving Earth frame over a period of time, a ship or plane
in its eastward directed motion must make a small course correction northward in
themorthernshemispheresandisouthwardimthe southern hemisphere, to counter the
Coriolis force effectin (5.102). At the equator A = 0, only the vertical component
is active: —2m €Y x v, = 2mQ2yKk, so no course adjustment is needed. Other subtle
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Coriolis effects on the motion of a particle relative to the Earth are demonstrated
in some applications that follow.

6.16. Free Fall Relative to the Earth—An Exact Solution

The elementary result (6.24) for the motion of a particle that falls from rest
relative to the Earth shows that the particle falls on a straight line—the plumb line, a
result that ignores the Coriolis effect of the Earth’s spin. Due to the Earth’s rotation,
however, the particle in its free fall from rest is deflected horizontally from the
vertical plumb line. This Coriolis deflection effect is determined, and afterwards
the theoretical result is compared with experimental data. For simplicity, however,
effects due to air resistance, wind, and buoyancy are ignored.

The free fall problem is the simplest example for which an exact solution
of the equations of motion of a particle relative to the Earth may be obtained. In
this case, with (Q, R, ) = 0 and v,(P, 0) = 0 initially, (6.109)-(6.111) may be
readily integrated to obtain

X =2QysinA, (6.112a)
y = —=2Q(x sinA + zcos A), (6.112b)
7= —gt+2QycosA. (6.112¢)

The next step is less evident. We first substitute (6.112a) and (6.112c) into
(6.110) and set R = 0 to obtain

j 4 4Q%y = 2Qgt cos A. (6.112d)
The general solution of (6.112d) is given by
‘ __gtcosh
C2Q
Without loss of generality, the origin may be chosen so that x(P, 0) = 0. Thus,
withy =0and y =0att =0, we find A = 0, B = —(g cos A)/4Q?, and hence
_gcosh
42

Now substitute this relation into (6.112a) and (6.112c), recall the initial data, and
integrate the results to derive the exact time-parametric equations for the particle
path in its free fall relative to the rotating Earth frame:

y + Acos2Qt + B sin2Qt. (6.112¢)

(2Qt — sin 2Q2¢). (6.112f)

sin 2\
x= %T(zsz%z — 1+ cos29), (6.112g)
A
y= g:;’; (29t — sin2Q1), (6.112h)
gt?  gcos?A

- (29%t% — 1 4 cos2921). (6.1121)

2+ 492
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Notice that both horizontal and vertical components of the motion are af-
fected by the Earth’s rotation, and that the results are independent of the particle’s
mass. When the Earth’s rotational rate 2 — 0, these equations show that x — 0,
y— 0,z —> —% gt?. Thatis,x(P,t) = zk = %gtz, the elementary solution (6.24)
for which the Earth’s rotation is neglected.

6.16.1. Free Fall Deflection Analysis

Since €2 is small, but not zero, and the time of fall near the Earth’s surface
is of short duration, the path equations (6.112g)—(6.112i) may be simplified by
series expansion of the trigonometric functions to retain only terms of O(t)2.
This yields

t2
x(P,t) = ‘51—2((9:)2 sin 2 + 4Q1f cos Aj — 2(3 — 2(Q2t)% cos®> k). (6.112))

We thus find an eastward (j-directed) deflection of the first order and a north—south
(i-directed) essentially negligible deflection of the second order in 2¢. To terms of
the first order in 2¢, therefore, the motion is described by

1 1
X(P,t) = 5gszti* cos Aj — Egtzk. (6.112K)

The first term describes the Coriolis deflection, and the second is the elemen-
tary solution (6.24). Therefore, a particle P in its free fall relative to the Earth
experiences in either hemisphere an eastward directed deflection from the vertical
axis. The trajectory of P, shown in Fig. 6.29, to the first order in Q¢ is a semicubical
parabola in the east—west vertical plane:

) 8Q2 cos® A 2

=_ 6.1121
y o2 ( )

P
I“. Surface of the Earth

l W, /
—————= East

“ Figure6.29. Free fall deflection of a particle relative to the
g Earth
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The deflection y = d for fall through a height z = —h is

2 [2
d= gthos)\ —h (6.112m)
8

The deflection is greatest at the equator (A = 0) and vanishes at the poles (A =
+m/2). For example, the greatest deflection of a raindrop falling freely through
10,000 ft (3049 m), without air resistance, wind, and buoyancy effects, according
to (6.112m), is dmax = 12.1 ft (3.69 m). Though only 0.12% of the height, the
deflection in the ideal free fall case would be clearly observable. In fact, some
experimental results on falling solid pellets have been reported.

6.16.2. Reich’s Experiment

The free fall of pellets down a deep mine shaft at Freiberg, Germany was
studied by F. Reich in 1831 and published a few years before Coriolis reported
his formula for relative rotational effects in 1835. The depth of the mine was
158.5 m, and Reich observed an average deflection of 28.3 mm in 106 trials. The
corresponding value estimated by (6.112m) for the data Q = 7.29 x 107 rad/sec,
g = 9.82 m/sec?, and A = 51°N is 27.5 mm. Our theoretical estimate thus demon-
strates excellent agreement with Reich’s experimental result on the eastward de-
flection. It is known, however, that the eastward deflection is slightly reduced by
air resistance.

Long before the expression for the Coriolis acceleration was discovered, the
eastward deflection due to the Earth’s rotation was argued intuitively by natural
philosophers, though usually incorrectly, and Reich knew about this. In addition,
however, Reich found a small southerly deflection at Freiberg. This north—south
deviation is determined exactly by (6.112g) and to terms of the order (2¢)> by
(6.112j). If the time of fall v from the height 4 is estimated by their omission in
(6.112)) so that 72 = 2h/g, the north-south deflection is approximated by § =
x(1) = (h*Q?/3g) sin 2. Hence, the southerly deflection predicted for Reich’s
experimental data is roughly 0.004 mm. Within the error of experiment, this would
be zero and in fact negligible; so, it seems unlikely that such a minute free fall
effect could be accurately measured. The fact that Reich and others have observed
and reported the effect at all is surprising.

6.17. Foucault’s Pendulum

In 1851, J. B. Léon Foucault™ (1819-1868) discovered by experiment that
the effect of the Earth’s rotation on the motion of a carefully constructed pendulum

** The story of Léon Foucault’s life, his pendulum experiments, his invention of the gyroscope, his
numerous other accomplishments, and the illustrious period of French history during which he
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is to produce relative to the Earth an apparent rotation of its plane of oscillation
at an angular rate @ = Qsin A, clockwise in the northern hemisphere (A > 0)
and anticlockwise in the southern hemisphere (A < 0). Foucault’s first pendulum
consisted of a 5 kg brass bob attached to a 2 m long steel wire suspended from the
ceiling in the cellar of his house, its end held in a device that enabled the pendulum’s
unhindered rotation. To avoid disturbing extraneous vibrations from the thunderous
clatter of passing carriages and other neighborhood noise, echoes of busy Paris
streets that followed him to his cellar laboratory, he worked during the wee small
hours of the night. His first test, 1-2 AM, Friday, January 3, 1851, ended quickly in
failure when suddenly the wire broke. Several days later, modifications concluded,
at two o’clock in the morning of Wednesday, January 8, 1851, he recorded in his
journal the slow steady rotation of the plane of the pendulum’s swing. Secluded
from the rest of the world in the cellar of his house, without reference to heavenly
bodies, he thus witnessed for the first time in history direct proof of the rotation of
the Earth about its axis! (Incidentally, to relate the time of Foucault’s pendulum
experiments in France to American history, we may recall that Millard Fillmore
was 13% President of the United States (1850-1853).)

Needless to say, Foucault was most anxious to demonstrate his important
discovery to French scientists, but he needed a prominent public place to display
his pendulum. Moreover, the effect could be enhanced by the use of a longer
pendulum wire—remember, the period of oscillation for a simple pendulum is
increased with its length; so, with a longer wire the pendulum swings more slowly,
and the turning of the Earth is more easily seen.

Having no scientific credentials himself, he was generally not well-regarded
by the members of the French Academy of Sciences. On the other hand, Frangois
Arago, aman of scientific prominence and a member of the Academy, the renowned
and distinguished Director of the Paris Observatory, a large building with a high
dome, was a somewhat friendly, admiring associate, who was certain to appre-
ciate his discovery. Foucault convinced Arago to permit the presentation of his
pendulum discovery in the Meridian Hall, the largest, longest, and highest room
in the Observatory and, though unimportant to the experiment, perfectly aligned
lengthwise with the Paris Meridian. (This is the very Meridian a certain spec-
ified length of which was proposed to define the length of the standard meter,
but because of errors of its measurement, which is another story, actually it does

struggled for recognition by his colleagues in the Academy of Sciences, is told in the books by
Aczel and by Tobin cited in the References and from which this summary narrative is adapted.
There are, however, some ambiguities and discrepancies in their reports. For instance, it is not clear
from their separate presentations that Foucault’s pendulum demonstration and his paper presented
by Arago at the Academy announcing the discovery occurred on the same day. Also, Tobin, page
141, sets the time for Foucault’s Meridian Hall invitation at 2-3 pMm, while Aczel, page 93, reports
3-5 pM; and they express a difference of opinion on other historical matters, including the date
of Foucault’s first successful test! Consequently, when I perceived a conflict, unable to check the
original sources myself, though the difference might seem insignificant, I generally leaned toward
Tobin’s view.
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not.) The high ceiling of Meridian Hall would allow use of a pendulum of 11 m
length.

Foucault prepared invitations and sent them to all members of the Academy
and some others—*“You are invited to come to see the Earth turn, in the Meridian
Hall of the Paris Observatory, tomorrow, from two to three.”—an invitation clearly
designed to stimulate curiosity and to drive attendance. On February 3, 1851,
Foucault (see the References) announced his pendulum discovery in a paper pre-
sented to the Academy by then supportive Arago. Later that day, many of France’s
most famous scientists and mathematicians assembled in Meridian Hall to see
the Earth turn. Word of Foucault’s pendulum experiment success instantly excited
the interest of science-minded Louis-Napoléon, President of the French Repub-
lic, who decreed straightaway that the experiment be repeated in the Panthéon, a
grand temple and mausoleum for great Frenchmen, the highest domed building
in all of Paris. A new pendulum 67 m long and weighing 28 kg, the then longest
and heaviest in the world, was fabricated. At the end of March 1851, Foucault’s
dream was realized—the Panthéon pendulum exhibition was open for all visitors
to witness. Later that year, a report of a pendulum experiment in Brazil confirmed
the counterclockwise, southern hemisphere (A < 0) rotation of the pendulum in
agreement with Foucault’s empirical sine relation w = Qsin A.

The dynamical equations of motion of a particle relative to a moving reference
frame were widely known long before 1851. The earliest derivation appears to have
come from A. Clairaut in 1742 (see Dugas in the References). The result, how-
ever, is commonly attributed to G. G. de Coriolis (1792—1843), a student of Siméon
Denis Poisson (1781-1840), who presented the correct equations in a paper read
to the Academy of Sciences in 1831 and published a year later. Moreover, it is
known that probably around 1837, Poisson had analyzed the Coriolis effect on the
motion of a pendulum; but failing to appreciate its cumulative effect, he rejected
the result as too small to be noticeable and apparently never published it. Fou-
cault’s demonstration sparked new interest among mathematicians and scientists
to explain by analysis Foucault’s empirical sine rule. At a meeting of the Academy
a few days after Arago’s presentation of Foucault’s memoir, J. P. M. Binet, an
obscure professor of mechanics and astronomy, wrote down the equations of mo-
tion from the principles of dynamics and following some approximations and a
lengthy analysis, there, for the first time, derived Foucault’s equation for the rate
of rotation of the pendulum. (See the References.)

Though widely acclaimed around the world for his work in science and en-
gineering, the ultimate honor that Foucault desperately desired, his election as a
member of the Academy of Sciences, was continually denied to him. A seat in the
Academy opened only upon the death of a member and then, of course, the number
of candidates seeking election was many, to say least about vote-rigging politics
that sometimes raised its ugly head. Foucault had narrowly missed election several
times. Finally, on January 23, 1865, 14 years after his famous demonstration of the
Earth’srotationyand;3yyears;beforeshisrdeath, his quest was finally realized when
he was elected to the Academy of Sciences. Foucault described the long awaited
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approbation of his peers, his election to Academy membership, as one of the great
joys of his life. (See Tobin in the References.)

Nowadays, one may find a Foucault pendulum in just about every major city
around the world. In Lexington, Kentucky, for example, a Foucault pendulum
swings in the Public Library on Main Street. Surprisingly, the pendulum has
been exhibited at the Panthéon only since 1995. In St. Petersburg (formerly
Leningrad), Russia, during the Soviet years from 1931, interrupted by the war
of 1941-1945, and thereafter continuing until the late 1980s, the world’s longest
Foucault pendulum, nearly 100 m in length, was suspended from the dome of
St. Isaac’s Cathedral, one of the tallest churches in the world, built in 1818-1858.
Students were taken regularly by their professors to see this remarkable display
proving the rotation of the Earth. Soon after Soviet President Mikhail Gorbachev’s
initiation of perestroika and his rise to power in 1988, St. Isaac’s was returned to
the Church, and the phenomenal Foucault pendulum, the incongruous centerpiece
of St. Isaac’s swinging from its cupola, was promptly removed. Today, the image
of a white dove in flight adorns the pinnacle of the incredibly beautiful and
spectacular ceiling within the golden dome of this magnificent church. Though
still principally a museum as decreed by the Soviet government in 1931, from time
to time St. Isaac’s nowadays holds religious services on special occasions, and a
Foucault pendulum may be seen at the St. Petersburg Planetarium. Everyone who
has observed the swing of a Foucault pendulum has, in effect, seen the rotation
of the Earth!

6.17.1. General Formulation of the Problem

We now turn to the analysis of Foucault’s pendulum phenomenon. Let us
consider a pendulum bob of mass m attached by a long wire of length £ to a
fixed point (0, 0, £) along the vertical plumb line in the Earth frame ¢ = {O;i;} in
Fig. 6.30. The relative position vector of m in ¢ is X(1m, t) = xi + yj + zk. The total
force F on the bob is its apparent weight mg and the wire tension T = Tn = Qi +
Rj + Sk, where n = —x/¢i — y/£j + (1 — z/0)k. Hence, the general equations
(6.109)—(6.111) yield the following relations for the motion of the pendulum bob
relative to the Earth:

Tx .
mi = —— +2mQysinA, (6.113a)
¢
T
my = —Ty — 2mQE sinA + £ cos &), (6.113b)
T -
mzi = (¢-2 —mg + 2m2y cos . (6.113¢)

These equations cannot be integrated exactly for large amplitude oscillations.
The manner in which the wire tension varies with the motion is unknown, and its
eliminationfromtheseequationsservesonly to further complicate matters. Itis pos-
sible, however, to derive an approximate solution for small amplitude oscillations.
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Figure 6.30. Foucault’s pendulum and its motion relative to the Earth.

6.17.2. Equations for Small Amplitude Oscillations

Let us assume that the wire is long compared with the displacement so that
x/£, y/¢, and all of their time derivatives are small terms. Since £ — z = £[1 —
(x* + y»)/£*1'/2, our smallness assumption shows that z/¢ = (x2 + y2)/2¢62, ap-
proximately. Hence, z/¢ and its time derivatives are small quantities of the second
order and may be discarded from (6.113a)—(6.113c). In particular, (6.113c) then
yields an equation for the wire tension,

T =m(g —2Qycos ). (6.113d)
Since € is very small, (6.113d) shows that the tension, as expected, is very nearly
equal to the apparent weight of the bob.

Using (6.113d)in (6.113a) and (6.113b) and neglecting terms of second order,
we obtain the simpler, but coupled system of linear equations

¥ — 2wy + p*x =0, j+ 2wk + p*y =0, (6.113¢)

in which

pE\/g, w=Qsin\. (6113f)

The constant p is the famlhar small amphtude circular frequency of the simple
d ; ed. Itis evident from (6.113¢), however,
ot simple harmonic.
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6.17.3. Solution of the Small Amplitude Equations
The solution of the coupled system (6.113e) may be obtained following an

unusual change of variable. We multiply the second of (6.113e) by i = 4/—1, add
the result to the first equation in (6.113e), and introduce the new complex variable

§(t) = x(1) +iy(r), (6.113g)
to obtain the single complex equation
E+2iwk + p* = 0. (6.113h)

The general solution of (6.113h) is
E(1) = A1’ + Aze™™, (6.113i)

in which A; and A, are integration constants, possibly complex, and the charac-
teristic exponents are given by

a = —w— o, = —w+ o, with o* = w?+ p2.  (6.113))
To determine the constants A; and A, let us suppose that the pendulum is
released from rest at x(0) = x¢, y(0) = 0 at time t = 0. Then, by (6.113g), the
initial values of the complex variable are £(0) = xo, £(0) = 0, and hence (6.113i)
delivers
X002 X0

A= , Ay =— . (6.113k)
oy — o ay — o
Finally, use of (6.113j) in (6.113k) yields the real-valued constants
X N —
A= (1+02), k=12 (6.1131)

We recall Euler’s identity (6.49) to cast (6.113i) in the form
E() = (A cosagt + Aycosast) + (A sinagt + A; sinayt). (6.113m)

It now follows with (6.113g) that the solution of the coupled equations in (6.113e)
for the small amplitude motion of Foucault’s pendulum is

x(t) = Ajcosayt + A, cosant,
() 1 1 2 2 } 6.1130)

y(t) = Ay sinagt + Aj sinapt,

where the constants o and Ay are given by (6.113j) and (6.1131). Let the reader
consider the following alternative procedure.

Exercise 6.8. Notice that (6.113h) s similar to the damped oscillator equation
(6:83);-and-hence the solution.method.starting from (6.86a) is applicable. Begin
with &(z) = eP'u(t), recall (6.113f) and (6.113j), and show that the general solution
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of (6.113h) for the assigned initial data for £(¢) yields the motion

w .
x(t) = xp (cos w*t cos wt + — sin w*t sin a)t) ,
w

w (6.1130)
y(t) = xo (— cos w*t sin wt + — sin w*t cos a)t) .
1)
Show that the same results follow from (6.113n). O

6.17.4. Physical Interpretation of the Solution

The motion (6.113n) is harmonic in time, but not simple, and it is not periodic
unless o /o is a rational number. Nevertheless, a period characteristic of the
oscillation may be defined that will facilitate our physical understanding of the
Foucault phenomenon.

The half-period t/2 is defined as the time required for the pendulum to
complete its outward swing from its initial position. To find the period 7, we first
determine all times 7 # 0 for which (7)) = 0. Differentiation of (6.113n) and
use of (6.113k) shows that 7" must satisfy sin(e; T) = sin(a, T) and cos(a; T) =
cos(a,T). Hence, Tay = Tay + 2nw for all integers n. Use of (6.113j) in this
expression yields the (positive) rest times

fmy="2 =" a=12... (6.113p)

At each time T'(n), the bob attains a position of instantaneous rest. Thus, for
the first outward swing, 7(1) = /2, and hence the period of the oscillations is

2 2w
=—= 6.113
iy g ©1139
Thus, @* defines the circular frequency of the oscillations, and the frequency is
given by

*
pelo Lo, (6.113r)
T 2n 2&m

When the Earth’s rotation is neglected so that w = 0, (6.113q) and (6.113r) reduce
to the period and frequency for the simple pendulum. Otherwise, the Earth’s
rotational effect on the oscillations of a pendulum is to increase its frequency
(decrease its period) very slightly compared with that of the simple pendulum.
Moreover, in view of (6.113f), the frequency is greatest (the period least) at the
poles and least (greatest) at the equator where the effect vanishes to yield the
simple pendulum;small-amplitudewvaluesThat is, the frequency varies from p /27
at the equator to (p? + Q2)!"/2/2x at the poles.
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Figure 6.31. The Coriolis effect on the trajectory relative to the Earth of Foucault’s pendulum viewed from
its point of support at a place in the northern hemisphere where its apparent rotation is clockwise.

The rest positions of the bob at each half-period 7'(n) = nt/2 = nm/w* may
be obtained from (6.1130), which yields

x (%r) = (=1)"xg cos (gwt) , y (gr) = (=1)""'xysin (ga)t) .

(6.113s)
In particular, the position of the bob after one full swing out and back is, forn = 2,
x(1) = xp cos(wt), y(t) = —xp sin(wt). (6.113t)

Since x(nt/2)? + y(nt/2)* = xZ, itis seen that the locus of rest positions (6.113s)
is a circle of radius xy. Hence, (6.113t) shows that the initial position vector
Xo = Xpi, viewed from the point of support, has been rotated through an angle wt,
which is clockwise when w > 0 and counterclockwise when w < 0. The second
relation in (6.113f) shows that w > 0 in the northern hemisphere, @ < 0 in the
southern hemisphere, and w = 0 at the equator where the motion is always simple
harmonic. Therefore, as first demonstrated by Foucault, relative to the Earth,
the plane of oscillation of a pendulum has an apparent clockwise rotation in the
northern hemisphere, a counterclockwise rotation in the southern hemisphere, and
no rotation at the equator.

The motion is illustrated in Fig. 6.31 for the northern hemisphere. The pen-
dulum starts from a southward displaced position of rest at a small distance x
from:the-plumb-line--As-the-beb-meves-on its outward swing, it experiences a
Coriolis force directed eastward; but on its return swing, the Coriolis force is
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directed westward. The deflection always is toward the right of the direction of
the swing in the northern hemisphere. This is shown in Fig. 6.31a. Hence, the
bob, after one period, has undergone a net displacement westward to the posi-
tion x(7) = xg(cos wti — sin wtj), the same distance from the origin, but rotated
clockwise through a small angle wt from Xo, as shown in Fig. 6.31b. At each
time T(n) = nt/2, the same thing is repeated over and over, so the bob traces
the star shaped trajectory described by (6.1130) and illustrated in Fig. 6.31. The
apparent motion in the southern hemisphere for which A < 0 is counterclockwise.
The vertical plane of the pendulum’s oscillations thus rotates relative to the Earth
with Foucault’s angular speed w = Q2 sin A, as indicated in (6.113t). The number
of days t,;(A) required to complete one full revolution of the plane of oscillation of
the pendulum is thus given by t;(1) = 1/ sin L. Consequently, Foucault’s pendu-
lum takes 1 day to complete its apparent turn at the poles where A = £ /2, and
this cyclic time increases as the latitude A decreases toward the equator where the
effect disappears. Specifically, at A = /6, t,(r/6) = 2 days/revolution, and at
the equator 7,(0) = oo days/revolution, that is, the Foucault effect vanishes.

6.18. Relative Motion under a Constant Force

The scalar equations (6.109)—(6.111) for the motion of a particle relative to
the Earth may be integrated exactly for any constant force components (Q, R, S).
However, the general description of motion of a particle P relative to the Earth
under a constant force f = F/m per unit mass also may be derived as an easy
approximate solution of the vector equation of motion (5.102), namely,
dv

— =f-2Q xv. 6.114
5 XV ( a)

This is a first order, vector differential equation for the relative velocity v =
v,(P, t) = 8x/3t. Since (2 is a constant vector, (6.114a) may be readily integrated
to obtain

8
v(P,1) = E)?( = fr — 20 x (X — %) + Vo, (6.114b)
in which xo = x(P, 0), vo = v(P, 0) are assigned initial values. For example,
when gravity is the only force on a particle at rest initially at the origin, f =
—gk, x0 =0, vy =0, and (6.114b) is then equivalent to the system of scalar
equations (6.112a)—(6.112c) for the motion of a particle in free fall relative to the
Earth.

The equation for the motion x(P, ) of P relative to the Earth under the general
constant force f follows by use of (6.114b) in (6.114a); we find

8°x

St—2—4ﬂx(ﬂxx)=f—29x(ft+vo+20xxo). (6.114¢)
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Upon discarding terms of order ©2, we obtain the easily integrable vector differ-
ential equation

sv 8%
— = —=f-2Q x (ft . 6.11
5 = 32 x (ft 4+ vo) (6.1144d)
With the initial values xo and vy in mind, the first integral is
8x 1,
v=§=v0+ft—29x Eft +vot |, (6.114e)

and hence the approximate motion of P relative to the Earth is given by
1 1
X = Xo + Vol + zfﬁ - Qx <§ft3 + v0t2> : (6.114f)

To check the result, let us consider the motion of a particle in free fall from
rest at the origin. Then f = g = —gk and (6.114f) simplifies to

1 1
x(P, 1) = Egﬁ —-Qx ggt3. (6.114g)

Use of (6.107) yields (6.112k) derived earlier for the free fall case in which terms
of order 2 were neglected.

6.18.1. First Order Vector Solution for Projectile Motion

The approximate solution (6.114f) for the motion of a particle under a constant
force is applied to investigate the Coriolis effect on the motion of a projectile P
fired at xo = 0 with a relative muzzle velocity

vo = V(cos i+ cos Bj + cos yk). (6.115a)

Here «, 8, y are the direction angles of the gun in the frame ¢ = {O; 1, j, k} defined
in Fig. 6.28. The usual extraneous effects are neglected. Then only the body force
f = g = —gk per unit mass acts on P. We thus recall (6.107) and (6.115a) to
derive from (6.114f) the following estimate for the projectile’s motion relative to
the Earth:

X(P,t) = Vt(cosa + Q2 cos 8 sin A)i
: Qgr? :
+ Vit |cos B — Qt(cosy cosh + cosasinA) + ETA cosA |

t
+ Vi (cosy + QtcosBcosA — ég—v) k. (6.115b)

Example 6.16. Determine the Coriolis deflection of a projectile fired east-
ward-at-latitudeA=Derive the-classicalrelations for the motion and the range when
the Earth’s rotation is neglected.
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Solution. Since the projectile is fired due east (the j direction in Fig.
6.28), the angle of elevation is B. Then a = 7/2, y = 7 — B, and (6.115b)
becomes

X(P, 1) = QV1?cos B sin A
: Qgr’ :
+Vi|cosB — QtsinBcosh + —ﬁ/—cos)\ J (6.116a)

t
+Vt (sinﬂ+9tcosﬂcosk— 5—‘1) k.

First consider the case when the Earth’s rotation is neglected. With
Q2 =0, (6.116a) reduces to the classical elementary solution for projectile
motion:

t
X(P,t) = VitcosBj+ Vt (sinﬂ — f—v) k. (6.116b)

The time of flight t* = (2V sin B)/g for which z(¢+*) = 0 is then used to find the
projectile’s range r = y(t*), namely,

V2
r = —sin28. (6.116¢)
8

Now consider the Earth’s rotational effect. Equation (6.116a) indicates a
lateral (i-directed) Coriolis deflection of the projectile normal to its east directed
range line, toward the south in the northern hemisphere and toward the north in
the southern hemisphere. To find the deflection, we need the projectile’s time
of flight t* given by z(+*) = 0 in (6.116a). To the first order in 2, we find for
VQ/g <« 1,

2V si 2V A
o 2VsinB (1+ cos pcosr ) (6.116d)

g g
The lateral deflection x* = x(¢*) and the range r* = y(¢*) are now determined by

the remaining components in (6.116a). The projectile’s Coriolis deflection to first
order in 2, with VQ/g « 1, is thus given by

4QV?3 sin® in A
o sin ﬂzcosﬂ sin ' 6.1160)
8
The reader will explore the range effect in the exercise. O

Exercise 6:9::Showsthatrtosthesfirstorder in 2, the variation 8 = r* — r in
the range due to the Earth’s rotation when the gun is fired eastward with muzzle
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speed V at an elevation angle 8 and at latitude A is

3

4QV . 4,
dr = cosAsinfB |1 — —sin“ B
g 3

2r3 cot 1
= QCcosA Loﬂ (1 - —tanz,B).
g 3

(6.116f)

O

Notice that §» = 0 when 8 = 60°; therefore, in the absence of air resistance,
the Earth’s rotation has no first order effect on the projectile’s range when fired
eastward at an elevation angle 8 = 60°. Otherwise, the Coriolis effect is to increase
the range when 8 < 60° and decrease it when 8 > 60°. The effect is the same in
both hemispheres, and it may be considerable for high velocity projectiles or
missiles. Large naval guns operate at fairly small angles of elevation, usually less
than 15°; so the Earth’s rotational effect is to increase their eastward directed
range.

Finally, consider the Coriolis deflection (6.116e). In the northern hemisphere,
sinA > Oand x* > 0; therefore, the projectile’s lateral deflection from its eastward
directed firing line is toward the right, southward. In the southern hemisphere,
however, the deflection is toward the left, northward. A correction for the effect
in the northern hemisphere by directing the line of fire northward by an amount
x* without subsequent readjustment in the southern hemisphere at the opposite
latitude would roughly double the northward deflection from the eastward directed
line of fire. While the projectile suffers no lateral deflection at the equator, A = 0,
the variation in the range with latitude given by (6.116f) is greatest there. Ballistic
accuracy, therefore, requires that the Coriolis effect be accounted for in fire control
and inertial guidance designs for long range, high velocity projectiles or missiles.

6.18.2. The Battle of the Falkland Islands

In late October 1914, Germany’s (East Asiatic) China Squadron under the
command of Vice Admiral von Spee patrolling in the Pacific Ocean was underway
toward Cape Horn to harass British bases and shipping in the South Atlantic before
attempting to return up the Atlantic to Germany.'" Two heavy cruisers, von Spee’s
flagship, the Scharnhorst, and her sister ship, the Gneisenau, each mounting eight
rapid-firing 8.2-in. guns, were accompanied by the three light cruisers Niirnberg,
Leipzig, and Dresden, each with ten 4.1-in. batteries. The German gunners were
well-trained, experienced, and most efficient.

i This'account is'adapted from the teferenced reports by D. Howarth and Major R. N. Spafford, that
by Howarth being more detailed. There are, however, a few minor discrepancies between them.
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A British Squadron of older, slower ships, manned mostly by inexperienced
reservists, based at the Falkland Islands under the command of Rear Admiral Sir
Christopher Cradock, was at sea off the Pacific coast of Chile in search of von
Spee. Cradock’s flagship Good Hope mounted two 9.2-in. and sixteen 6-in. batter-
ies; two light cruisers, the Monmouth and the Glasgow, each with several 6-in. guns;
and an armored merchant ship, the Otranto, carried eight 4.7-inchers. A dilapi-
dated battleship Canopus with four 12-inchers was too slow to keep pace with the
others.

In the evening of November 1, Spee was found at Coronel off the coast of
Chile. In heavy seas with winds near hurricane force, Cradock decided to run a
parallel course and wait for an opportunity; but by 7 M. Spee seized the initiative
and engaged the British. The German light cruisers were outgunned and retreated
from action, but Spee’s two armored cruisers provided overwhelming rapid-fire
power far superior to Cradock’s. The Scharnhorst scored 35 hits on the Good Hope;
the last struck the ship’s magazine. An enormous explosion followed. Ablaze from
stem to stern, almost instantly, the Good Hope, with Rear Admiral Sir Christopher
Cradock and all 900 officers and crew, was gone. Later that night, following a
relentless barrage by the Gneisenau, the Monmouth sank with all 754 hands. The
Glasgow and Otranto fled southward to escape in the darkness and join the old
battleship Canopus.

Not one man among the 1654 on board the two British cruisers survived the
battle royal, while the Germans suffered only two wounded and six minor hits in
the exchange. When word of this great tragedy and crushing defeat of the Royal
Navy reached the British Admiralty, a superior British Squadron of eight warships
was ordered to the Falklands to arrive on December 7, 1914. The dreadnoughts
Invincible and Inflexible, two of the first heavily armored British battleships to
have a large battery of eight 12-in. guns capable of being fired simultaneously in
the same direction, five light cruisers, and an armed merchant vessel were directed
to avenge the humiliating defeat at Coronel. The order: “Find Spee and destroy
him!”

At dawn the next morning, December 8, the Gneisenau and the Niirnberg
arrived at the Falklands to reconnoiter for a raid on the strategic coaling and
wireless station at Port Stanley, expecting to find no ships of any importance
stationed there. They were met instead with fire from the old Canopus, intentionally
grounded in the harbor mud to serve as a Falkland fortress. One 12-in. shell hit
the Gneisenau. Realizing the circumstances, von Spee’s ships turned toward the
open seas of the South Atlantic, unaware that any major British ships were in
the area. Dreadnoughts with superior speed and fire power suddenly appeared on
the horizon at the harbor entrance. At that moment, Spee realized his pending
doom. At 12.45 pM that afternoon, in a calm sea with a clear sky, von Spee’s
Scharnhorst, Gneisenau, Niirnberg, and Dresden were overtaken and attacked by
the superior British Squadron. Eight hours later, the fury ended. Vice Admiral Sir
F-C-Doveton:Sturdee’s:Royal:Navy-Squadron reported 6 killed and 19 wounded,
while the Germans lost Vice Admiral Maximilian Graf von Spee, the Danish born
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Pioneer of the German Navy, and 2260 other courageous officers and men.!" The
heavy cruiser Scharnhorst, the Gneisenau, and the light cruisers Niirnberg and
Leipzig all sunk. Only the light cruiser Dresden escaped the British rage. Three
months later, she was found at a small island off the Pacific coast of Chile. During
negotiations for surrender and while flying the white flag from her foremast, the
Dresden was scuttled by her crew on March 14, 1915.

Marion and Spafford report® that at the start of this horrific battle, the British
shells completely missed the German ships. Marion suggests that this was due to
the double Coriolis effect, but precise details are not provided. It is a fact, however,
that the British Isles are situated near 50° N latitude and the Falklands near 50° S
latitude.

For south directed fire at an angle of elevation «, the transverse Coriolis
deflection y* = y(¢*) obtained from (6.115b) to first order in 2 is approximated
by

4QV3

1
y =- sinfa [ = cosAsina 4 sinAcosa |, (6.117)
g 3

which varies with the latitude. On the other hand, we find no variation 8r in the
range at any latitude, when a projectile is fired either southward or northward,
which may explain why the combatants ran a parallel course toward the east, firing
toward the north and south. Notice that the Coriolis deflection (6.117) in a south
directed shot is not symmetric in A, so there is a slight difference in the magni-
tudes of the westward, northern hemisphere and eastward, southern hemisphere
deflections. The maximum angle of elevation for large naval guns is about 15°. To
estimate the Earth’s rotational effect on a projectile’s motion based only partially
on circumstances reported for the Falklands engagement, let us suppose that at
A = 50° N latitude a shell from a 12-in. gun is fired southward with a muzzle speed
V = 1800 ft/sec (1227 mph) at an angle 8 = 13°. The reader will find that the
range, which is given by the classical rule in (6.116c¢), is approximately 8.3 miles.

tt The gallant Spee, his Scharnhorst seriously crippled and listing, rejected surrender to Sturdee. The
Scharnhorst sank with Spee and all 765 hands. One hundred and ninety of the 850 man crew of the
Gneisenau and only 23 sailors from both the Niirnberg and Leipzig, all sunk, were rescued from the
frigid waters of the South Atlantic; but many of them subsequently died from their battle wounds or
shock.

$ Marion (page 348) remarks on the Coriolis effect but provides no reference or calculation to support
his claim that the British salvos fell 100 yards east of their southward targets. See the References
and Spafford’s report mentioned below.

The muzzle speeds used in the example presented below equation (6.117) and in Problem 6.76
are estimates obtained from general naval records: for a 5-in. gun, V = 2650 ft/sec, and for a 12-in.
gun V = 1800 ft/sec and greater, depending on the model design. The range and latitude (actually
closer to 51.5°S) are estimated from battle data described by Major R. N. Spaftord, whose sketch
of the battle plan of December 8, 1914 shows the British heading east, running a parallel course,
14,000 yards (8 miles) north of the Germans. By Spafford’s account, initial fire was exchanged but
without effect, except for a single German round that struck the Invincible. At the ideal range of
15,000 yards (8.5 miles) for the 12-in. guns of his battle cruisers, Sturdee found the target first and
bombarded Spee’s squadron.
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Under these conditions, the deflection, according to (6.117), will be about 19 yards
to the right, westward of the line of fire in the northern hemisphere and roughly 22
yards eastward in the southern hemisphere. A fire control system that corrects for
the deflection only in the northern hemisphere (by pointing its sights eastward),
when fired southward at 50° S latitude, will direct a shell about 41 yards to the left,
east of its south directed target. These deviations increase substantially for larger
muzzle speeds. (See Problem 6.76 and the remarks in the last footnote above.)

The weight of a projectile may vary considerably from roughly 70 1b for a
5-in. shell to about 1800 1b for a 16-in. shell. Since in this analysis gravitational
force is the only force acting on the projectile, however, it is seen that the results
are independent of the mass of the projectile or any of its design features. Intro-
duction of drag force and aerodynamic body features would bring these additional
characteristics into view. Of course, variations in the results arise from the lack
of more precise data for the parameters, and the motion of the ships has been
ignored.

Even though our model is not precise, it shows for a simple case that if ini-
tially the range of the British guns was erroneously set to correct for a westward
Coriolis deflection (appropriate for battle in the northern hemisphere in the vicinity
of the British Isles), when fired southward in similar circumstances at the opposite
latitude in the South Atlantic Ocean, the barrage would fall to the left of its target,
eastward, by a distance nearly double that deflection. If our simplified model is typi-
cal of the real circumstances, the actual gross effect must have appeared surprising
to the British gunners when, in the situation described by Marion, their “accu-
rately” aimed, southward directed salvos fell 100 yards to the east of the German
ships.

6.18.3. Concluding Remarks

There are other kinds of subtle but measurable Coriolis effects. Instead of a
single particle model, we may consider a stream of river particles flowing from
the north toward the south, like the great Mississippi. The Coriolis force on a fluid
particle in the Earth frame is directed westward. We thus see, if only heuristically,
that the water will exert greater pressure on the west bank than the east. Geographers
have established that this pressure causes greater erosion on the west bank and
further that the water level also is slightly but measurably higher on the west
bank. The same flow from north to south in the southern hemisphere would induce
greater erosion and a higher water level on the river’s east bank. The extent of the
effect varies, of course, with the geographic latitude. A similar effect occurs for
other directions of flow. The Coriolis effect on ocean and tidal currents is similar;
the effect on atmospheric air flow and cyclonic motion is more pronounced. All of
these measurable effects arise from the fact that the Earth is not an inertial reference
frame;and all'are predictable fromyNewton’s basic principles of mechanics.

‘We have seen that the effects due to the Coriolis acceleration, though usually
small, certainly are not always negligible. For the sake of simplicity and because
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the moving Earth frame closely approximates an inertial reference frame, hencefor-
ward, unless specified otherwise, the Earth’s rotational motion is ignored in future
applications. It is nonetheless important that the engineering analyst be aware of
potential Coriolis effects and evaluate whether these should be safely excluded in
problems of motion relative to the Earth.
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Problems

6.1. The slider block A of a mechanism has mass m = 400 gm and moves in the horizontal
plane in a straight track with a dynamic coefficient of friction v = 0.25. At an instant of interest,
the links AB and BC are in the positions shown in the figure, and A has a speed of 30 m/sec which
is increasing at the rate of 20 m/sec?. An instrument indicates that link A B is under tension. Find
the forces that act on A in the plane of its motion at the moment of interest.

30 m/sec

Problem 6.1.



Dynamics of a Particle 199

6.2. A small pin P of mass m is constrained to move in a smooth, straight slot F'G milled
at an angle 6 in a flat plate fixed in the horizontal plane. The motion of P is controlled by a
smooth, slotted link A B that moves during an interval of interest with constant acceleration a4
in ® = {F;i}, as shown in the figure. Find as functions of 8 the force exerted on P by each slot,
and show that the ratio of their magnitudes is a simple function of the angle 6 alone. What is the
acceleration of P relative to A?

//'///7//{/{11

Problem 6.2.

6.3. Two slotted links shown in the figure move on smooth guide rails fixed at right angles
to one another, their motion being controlled by a smooth pin of mass m = 0.04 kg. At a moment
of interest in the machine frame ® = {F;I,}, the link A has an acceleration a4 = 50I cm/sec?,
and the link B is moving upward with a speed of 40 cm/sec which is decreasing at the rate of
100 cm/sec?. (a) What is the total force acting on P at the instant of interest? (b) Determine the
force that each link exerts on P.

J 50 cm/sec

40 cm/sec|

j P

Problem6.3. F

6.4. A small guide pin P of mass 0.2 slug is attached to a spring loaded telescopic arm OP
of a bell crank lever hinged at O. The guide pin moves in a smooth, horizontal parabolic track
shown in the figure. At the track point A, the pin has a speed of 20 ft/sec, a rate of change of

2 uniaxial compressive force on P. Determine
L o L 4
J -

ces exerted on the pin P at A.
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Smooth
Parabolic Track

( ;
MB”" Crank
Problem 6.4.

6.5. The truck shown in the figure moves from rest with a constant acceleration a up an
incline of angle 6. What is the greatest speed v that the truck can acquire in a distance d, if the
crate C is not to slip on the truck bed? The coefficient of static friction is u.

Problem 6.5.

6.6. A mass m is suspended from a point O by an inextensible cord of length £, in a gravity
field g = —gk directed along the vertical axis through O. The mass rotates about the vertical
axis with a constant angular velocity w = wk. (a) Apply cylindrical coordinates to determine
the tension in the string and the vertical distance d from point O to the plane of motion of m.
(b) Solve the problem by application of appropriate spherical coordinates.

6.7. A small block of mass m rests on a rough, horizontal circular table that spins with a
constant angular speed w about its fixed central axis. What is the largest value that @ may have
if the block is to remain at rest at the radial distance r from the center? Explain how this device
might be used as an instrument to measure the coefficient of static friction.

6.8. Small bars of soap of equal weight W are cut from a continuous rectangular log by a
moving hot wire at the point A in a packaging machine shown in the figure. Each bar is released
from rest at A and slides down a smooth, circular chute of radius R to a conveyor belt at B.
(a) Determine the constant angular speed of the belt pulley P so that continuous transfer of
the bars to the conveyor will occur smoothly without sliding. (b) Find the contact force exerted

i at force will a bar exert on the chute at the
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Problem 6.8.

6.9. A mechanism slider A of mass 0.2 slug moves in a horizontal plane in a smooth,
parabolic slot defined by 2y = x2. At the instant shown in the diagram, A has a speed of 40
ft/sec, decreasing at the rate of 20+/2 ft/sec?. All joints and surfaces are smooth. Find the plane
forces that act on A.

Problem 6.9. 2t

6.10. A particle P weighing 1 N is free to slide on a smooth, rigid wire that rotates at a
constant angular speed w, = 30 rad/sec relative to a platform. At the instant shown, the platform
has an angular speed w; = 15 rad/sec that is decreasing at the rate of 5 rad/sec? relative to the
ground frame ®. The particle is initially at rest on the wire. What central directed force F is
needed to impart to P an instantaneous initial acceleration of 1 m/sec? relative to the wire?
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6.11. The slider block A shown in the figure moves in a smooth, circular slot of radius 2 ft
milled in a horizontal plate. The slider has a speed of 10 ft/sec, increasing at the rate of 20 ft/sec?
at the instant when the links AB and BC are perpendicular. The link A B exerts a uniaxial tensile
force on A, whose mass m = 0.10 slug. (a) Find the forces in the horizontal plane that act on
A at this instant. (b) Suppose that the circular slot is rough with coefficient of dynamic friction
v = 0.30, all other conditions being the same as before. Find the forces that act on A at the
moment of interest.

Problem 6.11.

6.12. A 2560 1b boat is being dragged from its place of rest with a constant acceleration of
3 in./sec? up a steep inclined boat ramp shown in the figure. The dynamic coefficient of friction
is v = 1/4 and at this place g = 32 ft/sec?. (a) Find the tension in the cable at the connector A.
(b) After 8 sec, the connector breaks. How much farther will the boat move up the plane?

Problem 6.12.

6.13. A guide link L is controlled by a drive screw to move a pin P of mass 50 gm in a
circular slot in the vertical plane. The screw has a right-handed pitch p = 5 mm and is turning at
a constant rate w = 120 rpm, as described in the figure. Ignore friction. What is the magnitude
of the force exerted by the circular slot on the pin at the position shown?

6.14. Suppose that the drive screw described in the previous problem is turning at the rate
@ = 150 rpm, as shown, but is slowing down at the rate of 30 rpm each second. Calculate the
magnitude of the force exerted by the circular slot on the pin at the position shown. What is the
intensity of the force exerted on the pin by the guide link?
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Problem 6.13.

6.15. A slider block S of mass m = 0.5 slug is constrained to move within a straight
cylindrical tube attached to a large disk A supported in a ring bearing R. The machine is situated
on the planet Vulcan where g = 20 ft/sec’. The slider maintains a constant speed v = 2 ft/sec
relative to A, which has a constant angular speed @, = & = 2 rad/sec relative to R. At an instant
of interest shown in the figure, & = tan~!(3/4), r = 2 ft, and the ring bearing is turning about 1ts
horizontal shaft B with angular speed @; = 10 rad/sec and angular acceleration @ = 5 rad/sec?
in the inertial frame & = {F;I;}. Determine the instantaneous value of the total contact force F,
exerted on S, referred to the frame ¢ = {O;i;} fixed in A.

Problem 6.15.

6.16. A small object of mass m rests at the top of a smooth cylinder of radius ». Under the
influence of gravity, a negligible disturbance causes the object to slide down the side of cylinder.
Determine the angle ¢ and the speed at which the object leaves the cylinder.

6.17. A constant total force F = 35i Ib acts for 3 sec at the center of mass particle C of a
body 2B that welghs 161 lb. The 1n1t1al veloc1ty of C is vo = 9i + 40j ft/sec at X = 16j ft in the
e and the motion of C as functions of time in ®.

at is its location 2 sec later, and how far did C
the same details by application of singularity
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6.18. An amusement park centrifuge shown in the figure consists of a large circular cylin-
drical cage of radius r that rotates about its axis. People stand against the cylindrical wall, and
after the cage has reached a certain constant angular speed w, to further excite the riders the cage
is rotated from its initial horizontal position to an inclined position at an angle 6. Determine the
minimum angular speed in order that a passenger will not fall when reaching the highest point
in the motion. The coefficient of static friction at the floor is w.

77" Problem 6.18.

6.19. A small object of mass m rests on a smooth conical surface having an apex angle 2.
The cone turns about its vertical axis with a constant angular velocity w = wk in a gravity field
g = —gk. The object is restrained from sliding by an inextensible string of length £ attached
at the apex on the axis of rotation. Identify appropriate spherical coordinates and apply (6.5) to
determine the critical angular speed at which the object will leave the surface. What is the tension
in the string at the critical speed?

6.20. The figure shows a box A moving upward on a loading belt B inclined at 10° and
moving downward with a constant speed of 150 cm/sec relative to the ground frame ® = {F;L;}.
At the initial instant, the speed of A is 50 cm/sec relative to ®; and the coefficient of friction
between the sliding bodies is v = 0.3. How long does it take to reduce the relative speed between
the bodies to 25 cm/sec? Frame & should be suitably oriented for convenience.

Problem 6.20.
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6.21. An electrically conducting droplet of paint D of mass m and charge g, initially at rest
at the tip of a nozzle N, falls through a uniform electric field of strength E, directed as shown
in the figure, and ultimately impacts a flat sheet S beneath it. The field deflection plates P have
width 2d and height 4. (a) Derive the equation of the path traveled by D. What is the maximum
intensity of E that will still allow a droplet to impact S? (b) If the droplet D has an initial speed of
40 cm/sec, what electric field strength, directed as before, must be applied to produce a motion
x(D, t) = 6t%i + (Bt + yt2)j cm, in which 8 and y are constants? Determine 8 and y. (c) Find
the free fall droplet trajectory when the apparatus is tilted counterclockwise to an angle 6 from
the vertical axis.
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Problem 6.21.

6.22. The deflection plates of an ink jet printer are arranged as shown in the figure. A
charged ink droplet g enters the constant electric field E with the initial horizontal velocity v, at
point O. Find the trajectory y = y(x) of g for 0 < x < d and determine the droplet deflection
h* at the paper surface, approximated as a plane. Show that, independent of g, the deflection
h derived in (6.28d) for the case when £ = d is larger than the deflection A* by an amount
h—h*= (cE/2v§)(d — £)?, where ¢ = q/m.
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Problem 6.22.
6.23. A bullet of mass m is fired directly into a fluid that exerts on the bullet a drag force

gun has a muzzle velocity vo. Neglect gravity

D 1 i e traveled by the bullet.
s aLibl
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6.24. Water exerts a drag force on a boat which is proportional to the cube of its speed.
When the power is cut off, the boat’s speed decreases from vy to v(¢) in time ¢. Find the distance
traveled by the boat and determine ¢.

6.25. Consider a particle Q initially at rest at O in frame ® = {O; i} and acted upon by
a constant force f = 4i — j + 32k 1b/unit mass and by a drag force fp, = —xi — 2yj — 0.4zk
Ib/unit mass. Find the velocity and the place in ® occupied by Q after 2 sec.

6.26. A shell fired vertically upward from the ground with a muzzle velocity v, experiences
air resistance proportional to the square of its speed. (a) Determine the shells speed and altitude
as functions of time. (b) What is the maximum altitude attained by the shell? (c¢) Find the time ¢*
required to reach the maximum height and show that no matter how large vy may be, t* cannot
exceed wt/2. Identify the time constant 7.

6.27. A ball dropped from rest at the origin experiences air resistance proportional to the
square of its speed. (a) Find its speed after the ball has fallen a distance . What is its terminal
speed? (b) Determine as functions of time the speed and the distance through which the ball has
fallen. Sketch and label a nondimensionalized graph of the speed versus time and describe the
results in a manner similar to Example 6.11, page 120.

6.28. Consider the following integral

h(t)
u(r) =f F(t;t)dr, (P6.28a)
80

wherein F(t;t) is an integrable function of t and also depends continuously on a parameter
t. Notice that the limits of integration are continuous functions g(¢) and h(t) of z. (a) Use the
definition of the derivative of a function u(t), namely,

du(t) CLou(t+ A —u(@)
= limit ,
dt A0 At

(P6.28b)

apply the mean value theorem of integral calculus, and derive Leibniz’s formula for the derivative
of the integral (P6.28a):

h(t) .
du(t) dh(r) dg(t) f dAE@D 0 (pease)
8

a =F(h(t);t)7—F(g(t);t) at + o di

(b) Apply this rule to show that (6.47) is a particular solution of the differential equation
(6.39). '

6.29. Derive from (6.47) the particular solution (6.45b) of the differential equation (6.39)
when A(z) is given by (6.45a).

6.30. A ball governor of a speed control device consists of an arm OA hinged at O to
a vertical shaft OZ that rotates relative to the machine with a constant angular speed w; =9
rad/sec, as shown. At the same time, OA is elevated at a constant angular rate w, = 3 rad/sec
relative to the shaft and a ball B of mass 0.02 slug slides on the smooth arm. The ball is attached
to a spring, the other end of which is fastened to the arm. Design criteria specify that the shut-off
position at which the ball comes to rest on OA must be 4 in. from O; and for the position shown
at 6 = 90°, the spring must elongate 2 in. to achieve shut-off. Find the spring constant in units
of Ib/in. that will satisfy the design shut-off criteria. What force is exerted by the spring in this
position?
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Problem 6.30.

6.31. Consider a rigid body rotating through an angle 6(¢) about a fixed axis with unit
direction c. Notice that the velocity vector X(P, t) = fa x x of a body point P at x(P, ¢) from
apoint O on « yields the equation dx/d6 = o x X relating x and 6. (a) If initially x(P, 0) = xo
and 0(0) = 0, prove that X - « is a constant, and derive the relation d?x/d6? + x = (o - Xp)av.
Hint: Notice that dx/d6 is perpendicular to . (b) Determine the general solution of this vector
differential equation. This involves two constant vectors of integration, say A and B. (c) Find A
and B and thus show that the solution yields (2.7), Volume 1, for the displacement of a particle
P of arigid body in its finite rotation about the fixed line.

6.32. The motion of a particle P initially at rest at the origin is governed by the equation
# — g%x = e4". Find the motion of P.

6.33. The motions of two particles P and Q are governed by the following scalar equations of
motion: (P, t) + p?x(P,t) = g and ¥(Q, t) — p*x(Q, t) = g, in which p and g are constants.
Initially, each particle is started separately at the place x(0) = x, with a speed vy. Find the motions
of P and Q and discuss their physical nature. Determine their common motion when p = 0.

6.34. Alinear spring-mass system shown in its natural state in Fig. 6.13, page 134, is given an
instantaneous initial speed vy = 3 ft/sec on a smooth horizontal surface. The mass m = 8 Ib,, and
the spring stiffness k = 3 Ib/in. Suppose that g = 32 ft/sec?. What is the maximum displacement
of m? Caution: See Chapter 5 remarks on measure units, page 86.

6.35. A linear spring of stiffness k supports weights W and nW connected by a cord, as
shown. Initially, the system is at rest. (a) Determine the acceleration of the load nW immediately

Problem 6.35.
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after the cord supporting the load W is cut. (b) Find the motion z(¢) of the load nW from the
undeformed natural state of the spring. (c) Determine the motion x(#) from the initial stretched
state of the spring. (d) What is the motion £(¢) from the static equilibrium state of the load n W?
(e) Which of the three motions is the simpler? Are they equivalent? How are they related?

6.36. The figure shows an unstretched linear spring of stiffness k attached to a small block
of mass m at rest on a horizontal board simply supported at A and suspended by a string at B.
The string is cut and the board falls clear of m. Derive the equation of motion for the mass and
determine its subsequent motion. How long does it take for m to return to its initial position?

L String

4B

Problem 6.36.

6.37. A certain simple harmonic oscillator has mass m = 2 slug and an equivalent spring
constant k, = 600 Ib/in. The load is released at uy = 2 in. with a speed i1y = —20 in./sec directed
toward its equilibrium position. Determine the frequency, amplitude, and initial phase of its
motion u(t).

6.38. A load m = 50 lb,, is supported as shown by two linear springs having the same
elasticity k = 25 1b/in. (a) Find the static stretch of each spring from its natural state and determine
the stiffness of a single equivalent spring that may replace the parallel pair. (b) The mass is given
an additional 2 in. displacement and released. Find its maximum speed and determine its greatest
height from the equilibrium position. How long does it take to first attain these states? Compare
these times with the period of the vibration.

Problem 6.38.

6.39. The figure shows a block B weighing 25 N suspended by a string and attached to a
linear spring of stiffness k = 20 N/cm in its natural state. Determine the amplitude, the frequency,
and the position about which the vibration will occur when the string is suddenly cut.

Problem 6.39.
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6.40. A small block B of mass m = 0.25 slug is attached to a linear spring of stiffness
k = 16 Ib/ft in a gravity field of strength g = 32 ft/sec’. The spring is compressed 6 in. from its
natural state and the mass is released to execute oscillations on a smooth plane inclined as shown
in the figure. Find the motion as a function of time and determine its frequency and amplitude.

Problem 6.40.

6.41. The figure shows a box B of weight 480 N supported by uniaxial linear springs having
constant elasticities k; = 40 N/cm and k, = 60 N/cm. (a) Find the static displacement § of B
and determine the stiffness of a single equivalent spring that may replace the series pair. (b) The
box is displaced an additional 5 cm from & and released. What is the period of its vibration?
(c) What is the location of the box from its static state 2 sec after its release?

Problem 6.41.

6.42. A particle P of mass m and charge ¢ moves in an electromagnetic field of constant
field strengths E = Fi and B = Bk in an inertial frame & = {O; i}. Initially, P is at rest at O.
Find the motion x(P, t) of P in ® and characterize its path. Neglect gravity.

6.43. Two unstretched, linear springs having moduli k; and k, are fastened, as shown, to a
slider mass m that rests on a smooth horizontal surface. The slider is displaced a distance xy and
released with speed vy directed toward the natural state. (a) What are the circular frequency, the
period, and the amplitude of the vibration? (b) Derive the subsequent motion of m. Sketch the
motion as a function of & = pt and label its major features.

Natural
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Problem 6.43. Smooth Surface

6.44. A simple pendulum shown in the figure is supported by a light, hinged rod hung from
the ceiling in an elevator which moves upward with a constant acceleration ag . A curious person
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displaces the bob a finite angular amount 6, and releases it. (a) Find as a function of 8 the ratio
of the tension in the rod to the weight of the bob. (b) For small placements 6, what will be the
circular frequency and the period of the pendulum motion witnessed by the person? (c) How
will these results be changed if the elevator accelerates downward at the same rate? Describe any
potentially unusual effects.

E =l
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Problem 6.44.

6.45. According to elasticity theory, the infinitesimal circumferential engineering strain €
of a homogeneous, thin circular ring undergoing pure radial oscillations in its horizontal plane
is given by € = u/r, where r denotes the undeformed radius and u is the infinitesimal radial
displacement of the ring. The ring has uniform cross sectional area A and mass density w4 per unit
length. (a) Consider a circumferential ring element of mass dm(P) at a material point P. Apply
Hooke’s law for the uniform circumferential engineering stress 0 = Ee¢, where E is Young’s
modulus, and derive the equation for the radial motion. Recall that the circumferential force F
is defined by F = o A. (b) Determine the circular frequency and period. (c) What is the stiffness
of an equivalent linear spring-mass system that will produce the same vibrational frequency of a
load equal to total mass of the ring?

6.46. The spring and pulley system shown in the figure supports a load of mass M. The
spring has stiffness k and the masses of the cable, pulley, and load support bar are negligible.

Problem 6.46.
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Neglect friction and determine the circular frequency and period of the free vibration of the load
in its vertical displacement x(¢) from the static equilibrium state of the system.

6.47. A pendulum bob of mass m = 0.01 kg is fastened by a string of length / = 16 cm to
a hinge pin at r = 4 cm from the center of a smooth horizontal table on which the bob rests. The
table turns with a constant angular speed w, as shown in the figure. Relative to an observer in
the table reference frame, the pendulum executes oscillations of small amplitude Bo and period
7 = 0.5 sec. Find the angular speed of the table and compute the string tension 7 when § = Bo.

Problem 6.47.

6.48. Gravitational attraction by a fixed, homogeneous, thin ring of radius R and mass M
induces a particle P of mass m to move along its normal central axis, as shown in Fig. 5.13. (See
Example 5.6, page 38.) (a) Derive the differential equation of motion for P. (b) Show that for
sufficiently small displacements X(P, ) from the center O, the motion of P is simple harmonic.
What is the frequency of its small oscillations?

6.49. A smooth, rigid rod of length 2b is attached to a table that turns in the horizontal
plane with a constant angular velocity w, as shown. A slider block S of mass m is released from
rest relative to the rod at a distance a from its midpoint O. (a) Determine the horizontal force R

exerted by the rod on the slider as a function of its distance x from O. (b) Find of the motion of
S relative to the table.

Problem 6.49.

6.50. A small ball P of mass m slides in a smooth slot cut in a flat plate, asdescribed in the
diagram. The plate rotates in the horizontal plane with a constant angular speed 8 = w about an
axle at O in frame ® ={0O;1, J} fixed in the plane space. The ball is attached to a linear spring
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of modulus &, which initially is unstretched when P is released from rest relative to the plate at
F. (a) Find the motion x(P, t) of P relative to the plate for all constant values of the angular
speed w. (b) Determine the force exerted on P by the slot as a function of x and as a function of
t. (c) Characterize all physical aspects of the motion of P for all values of w. Refer all quantities
to the plate frame ¢ = {Fe, f}.

Problem 6.50.

6.51. A block S of mass m is free to slide on a smooth rod of length 2b shown in the figure.
The rod is fastened to a circular disk that rotates about an axle at O with a constant angular velocity

Problem 6.51.
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w = wkrelative to a turntable. The turntable spins in the horizontal plane with a constant angular
velocity £ = Qk about an axle at F in the ground frame. (a) Account for all forces that act on §
and derive its scalar equations of motion referred to the disk frame v = {O;i;}. What unknown
quantities do these equations determine? (b) Suppose that S is initially at ease at x = 0. Determine
the unknown quantities as functions of time.

6.52. The diagram shows two slider blocks of equal mass m attached to precompressed
springs of equal stiffness k /2. The blocks are confined to slide horizontally in smooth radial slots
in a table that spins counterclockwise with a constant angular speed w. Each block is positioned at
adistance £ from the center O when w = 0. If each spring is always under compression, determine
the equilibrium position r = rg of each block relative to the table. Examine the stability of this
relative equilibrium state.

Problem 6.52.

6.53. The figure shows a slider block of mass m attached to a spring of stiffness k in its
natural state at the center of a smooth rotating table upon which it rests in the horizontal plane.
The table turns with a constant anticlockwise angular speed w. (a) Determine the equation for
the motion r(¢) of the slider and examine the stability of the relative equilibrium states. (b) Note
that Hooke’s spring law (6.64) is the same in every reference frame and for every observer, that
is, the same extension of the spring in a fixed reference frame and in any other reference frame
having an arbitrary motion gives rise to the same force. The spring force is an internal action.
The inertial forces induced by the motion of the frame are external actions of the environment
on the system. The rotating observer, however, may perceive a pseudo-spring force F(r) with
stiffness k* that includes these inertial effects of the environment. What pseudo-spring force and
apparent stiffness are perceived by an observer in the table frame? (c) Discuss the character of
the motion as w is gradually varied.

Problem 6.53.
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6.54. A block S of mass m slides freely on a smooth rigid rod inclined at an angle o with
the horizontal plane of a rotating table T' to which the rod is fastened, as shown in the figure. The
table turns with a constant angular velocity w about a fixed vertical axis. If S is projected upward
from point O in the plane of T with an initial speed vy relative to T, determine its subsequent
position as a function r(). Find the initial force exerted on S by the rod. Refer all quantities to
the frame ¢ = {O;i;} fixed in the rod.

Problem 6.54.

6.55. Suppose in the previous problem that a coaxial spring of elasticity  is attached to the
smooth rod at point A and to the block S. The spring is unstretched when S is at O where its
initial speed is vp, as before. (a) Determine the relative equilibrium positions rs of S. (b) Find
the motion r(¢) of S relative to the table for all values of the angular speed w. (c) Discuss the
stability of the relative equilibrium states of S. Refer all quantities to the rod frame ¢ = {O;i;}.

6.56. A smooth rigid rod, whose geometry is described in the figure, is attached to a table
T that rotates in the horizontal plane with a constant angular velocity w = wk. A slider block
of mass m, supported symmetrically by identical springs of elasticity , is released from rest
relative to the rod at a distance a from the natural state at point O. (a) Determine the rod reaction
force on m as a function of its distance x from O. (b) Determine the critical angular speed w*

Problem 6.56.
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of the table for which a simple harmonic motion is not possible. (c) Find the motion x(m, t) for
the three cases for which w < w*, v = w*, and @ > w*. What are the period and the amplitude
of the motion of m in the oscillatory case? Use the table frame ¥ = {O; i} as reference.

6.57. A mass m is attached to one end of a rigid rod supported by a smooth hinge at O and
by a spring of stiffness k at A. The rod has negligible mass and the system is in equilibrium in
the horizontal position shown in the figure. The mass is given a small angular placement and
released. Apply the moment of momentum principle to derive the equation for the angular motion
6(t) of m and find the frequency of its small oscillations.
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Problem 6.57.

6.58. Apply the moment of momentum relation (6.80) for a moving point O to derive the
equation of motion of the pendulum bob in Problem 6.47.

6.59. A pendulum bob of mass m is attached to one end of a thin, rigid rod suspended
vertically by a smooth hinge at an intermediate point O. The rod is fastened at its other end
to identical springs of stiffness k, shown in the figure in their undeformed configuration. The
pendulum is given a small angular placement 6y and released with a small angular speed wy
toward the vertical equilibrium state. Ignore the mass of the rod. Find the motion 6(¢) of the bob
and describe its physical characteristics.

Problem 6.59.

6.60. Problem 4.48 in Volume 1 illustrates a simple pendulum of mass m and length £ hung
from a sliding support that oscillates vertically with a motion x(S, ¢t) = a + b sin pt, where a,
b, p are constants. Derive the scalar equations of motion for the bob. What quantities do these
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equations determine? This is a difficult nonlinear problem whose exact solution is unknown. For
small amplitude pendulum oscillations, however, the motion 6(¢) is described by Mathieu’s linear
differential equation, whose analysis, though well-studied, is not elementary. Let 2z = pt + n/2
and thus show that the Mathieu form of the equation of motion for small angular placements is

d*6 4g  4b
iz + (;ﬁ -7 cos 21) 0 =0. (P6.60)
6.61. The hinge support H for a simple pendulum of mass m and length £ is attached
to a Scotch mechanism. The crank has radius r and turns with a constant angular speed w, as
illustrated. (a) Derive the differential equation of motion for the bob m. (b) This equation has
no known exact solution. Show, however, that for a small angular motion 6(¢) the differential
equation reduces to the equation of motion for the forced vibration of an undamped, harmonic
oscillator. Find its solution when the pendulum is released at a small angle 6y with §(0) = 0.

Problem 6.61.

6.62. Discuss the free vibrational motion (6.861) of the heavily damped oscillator in relation
to Fig. 6.22, page 156. Show that if the mass is released from rest, it can only creep back to its
equilibrium position at z = 0 as t — oo (similar to Curve 2). However, if released with initial
velocity vy, it is possible that the load may cross its equilibrium position at one and only one
instant 7,, as suggested in Fig. 6.22. Find #,.

6.63. Repeat the details of the last problem for the critically damped, free vibrational motion
described in (6.86n).

6.64. The pointer of a vibration instrument has mass m and is supported vertically by a
spring of stiffness k. The base is subjected to a vertical motion u = A sin Q¢. (a) Derive the
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u=AsinQ2t  Problem 6.64.
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equation for the steady-state motion x(¢) of the pointer relative to the instrument and determine
its amplitude. (b) Let k = 5 N/mm, m = 2 kg, and suppose that the pointer moves between the
0.35 and 0.45 scale marks when the base motion has frequency €2 = 100 rad/sec. Determine
the amplitude of the base motion. (c) Now suppose further that the base motion frequency is
doubled while its amplitude is unchanged. What will be the response range of the pointer? Is the
pointer amplitude increased or decreased? (d) Is the system operating above or below its resonant
frequency?

6.65. The steam pressure indicator shown in the figure is an instrument that records the time
varying cylinder pressure generated in an engine. The piston Q, with surface area A, is restrained
by a spring of stiffness k = 100 1b/in. on one side and subjected to a periodically varying engine
cylinder pressure P = P cos wt on the other. The pressure produces forced vibrations of the
piston which are recorded on a uniformly rotating drum. The design requires that the natural,
free vibrational frequency p of the piston and recording pen assembly, which has a total effective
weight W, shall be much greater than the cylinder pressure fluctuation frequency w. Frictional
effects may be considered negligible. Derive the equation of motion for the piston assembly
relative to its static equilibrium position and estimate the weight limit of the assembly if the
pressure fluctuation frequency is not to exceed 10 Hz.
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Problem 6.65.

6.66. A heavy bead of mass m slides freely in a smooth circular tube of radius a in the
vertical plane. The tube spins with constant angular speed about the vertical axis, as shown.

g |

Problem 6.66.
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(a) Derive the equation of motion two ways: (i) by use of the moment of momentum principle
and (ii) by application of the Newton—Euler law. (b) Examine the infinitesimal stability of all
relative equilibrium positions of the bead.

6.67. Experiment shows that the undamped, forced horizontal motion of the system shown
in Fig. 6.20, page 152, has a steady-state amplitude H; when the driving frequency is €2;. When
the machine is speeded up to double the driving frequency, the amplitude is reduced to 20% of its
previous value. What is the resonant frequency of the system? Was the test data obtained above
or below the resonant frequency?

6.68. The supporting hinge H of a simple pendulum of mass m and length £ is attached
to a horizontal slider that has a constant acceleration a. The pendulum is released from rest in
a horizontal position relative to the slider, as shown in the figure. (a) Find the pendulum string
tension T'(9) as a function of its angular displacement 6. (b) Show that the other extreme position
of the pendulum is given by 6, = 2tan"!(g/a) and determine the string tension in terms of
a = |a| at both extremes. (c) Derive an equation for the time ¢, required to attain the position
6. (d) Determine all positions of relative equilibrium and examine their infinitesimal stability in
terms of the assigned parameters only. Refer all quantities to the natural intrinsic frame for m.

Problem 6.68.

6.69. A slider block B of mass m oscillates in a smooth circular groove of radius r milled
in a plate in the vertical plane. The slider is attached to a linear viscous damper of circular
design and damping coefficient ¢. The assembly is mounted on a shaker table T that exerts a
horizontal driving force F* = Fjsin Qf, as shown. (a) Derive the differential equation for the
finite amplitude motion of B about its vertical equilibrium position and find an equation for the
force exerted by the groove on the slider. (b) Now suppose that the shaker table is arrested and
the damper is removed so that 2 = 0 and ¢ = 0 in the equation of motion. The block is then
released from rest at a finite angle ¢(0) = ¢. Derive an exact integral relation that determines
the period of the finite motion as a function of ¢. What is the period of the small amplitude
motion?

6.70. Consider the shaker table (Problem 6.69) for the case when the angular placement
@(2) of the slider is small. (a) Find the steady-state and transient parts of the motion ¢(z). (b) What
is the resonant frequency of the system? (c) What is the amplitude at the resonant frequency?
(d) Identify the amplitude factor for the system.

6.71. A small cylindrical block B of unit mass oscillates with a simple harmonic motion
y'='acospirinrasmoothystraight-cylindricalstube oriented in the east-west direction on the
Earth’s surface at north latitude A. The parameters a and p are constants. Show that in addition
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Problem 6.69.

to the weight of B, the Earth’s rotation induces a tube reaction force on B which has both a
north-south component and a vertical, radially directed component. Although these additional
force components are very small compared with the weight of B, over a period of time they
eventually induce wear of the tube surface, for example.

6.72. The motion of a particle on a smooth plane inclined at an angle y is determined by the
coupled equations X — 2ywcosy = gsiny, ¥ + 2¥wcosy = 0, in which w is a small constant
for which terms of O(w?) may be neglected and g is the acceleration of gravity. If the particle
starts from rest at the origin of the inclined plane frame ¢ = {O;1, j}, show that after a time ¢
the particle has been deflected a distance d(t) = %gwﬁ sin 2y from the i-axis.

6.73. A particle Q of mass m and charge g > 0 moves in outer space down the side of a
smooth, right pyramid that rotates with a small, constant angular speed w about its fixed vertical
axis in a constant electric field E directed as shown in the figure. Show that if the particle starts
from rest at the apex O, its trajectory suffers a deflection d(t) from the normal, altitude line OA
which, to the first order in w, is given by d(t) = %ch 13 sin 2«. Herein o denotes the surface
inclination from the vertical axis and ¢ = g/m.

Problem 6.73.

6.74. A projectile is fired from the ground at north latitude A with an initial velocity vg
directed skyward and it attains the ultimate altitude . Neglect air resistance; assume that & is
sufficiently small that effects due to altitude variations in g may be ignored; and include only first
order effects of the Earth’s rotation rate . (a) Determine the Coriolis deflection d*(h) when the
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projectile reaches the height k. (b) Show that the projectile strikes the ground to the west of its
launching site at a distance d = %Qh cos A+/2h/g. (c) Find expressions for d* and d in terms of
the initial speed of the projectile.

6.75. A person seated at the wall in a cylindrical amusement park centrifuge of radius a
tosses a ball B straight upward into the sky. The centrifuge has a constant angular velocity w
relative to the Earth at north latitude A. Derive the scalar equations of motion for B referred
to the centrifuge frame ¢ = {O;i;}. Include the effects of the Earth’s rotation and identify the
appropriate initial data. Check your result against the text solution in (6.109)—(6.111) for the free
fall case when w = 0. Show that when £ = 0, 2 + y? = w?(r? — a?), where r(¢) is the radial
distance of B from the centrifuge axis at time ¢.

6.76. British battle maps for the Falkland Islands conflict of 1914 show that the British
directed their fire on the Germans from the north, almost directly southward, while heading east
at a constant flank speed v*. (a) Derive equation (6.117), for the Coriolis deflection relative to the
ship, at 50 ° N and S latitudes; and find the projectile range and its Coriolis variation. (b) Determine
the range and the Coriolis deflection for a shell fired with a muzzle velocity V = 2650 ft/sec
at an angle of elevation « = 10°. If the gun sight design corrected for the Coriolis effect only
near 50 °N latitude, what is the total deflection by which the British shells would miss a German
cruiser when fired at 50° S latitude? (c) Discuss any situations where the deflection may vanish
when Q # 0.
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Momentum, Work, and Energy

7.1. Introduction

Several methods of integration of the Newton—Euler vector equation of motion
and its related scalar equations have been studied in a variety of applications in
previous chapters. Although it is not possible to integrate these equations in general
terms for all types of problems, certain kinds of problems do admit general first
integrals that lead to several additional and useful basic principles of mechanics: the
impulse-momentum principle, the torque—impulse principle, and the work—energy
principle. Moreover, for certain kinds of forces, the work—energy principle may
be reduced to a powerful fundamental law known as the principle of conservation
of energy. The law of conservation of momentum and the law of conservation of
moment of momentum are two more first integral principles that derive from the
Newton—Euler law and the moment of momentum principle. This chapter concerns
the development and application of these several additional principles.

7.2. The Impulse-Momentum Principle

The first integral of the equation of motion has been obtained in a variety of
special problems where the force acting on a particle was a specified function of
time. However, it is sometimes possible to obtain information about the motion
even though a full specification of the force is not known. In particular, when a ball
strikes a wall, the force exerted by the wall on the ball varies suddenly in time, and
though we have no way of knowing the precise manner in which this impulsive
force changes with time, we can still obtain useful information about the motion of
the ball or the force exerted by the wall. To see how this may be done, we introduce
the vector—valued integral function J(t; 1,), called the impulse of the force ¥(t),

221
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F(t)

Figure 7.1. Graphical interpretation of the
mean value theorem.

defined by

t

It t) = / F(t)dt. (7.1)
to

Then integrating the Newton—Euler equation of motion: dp/dt = F(¢) with re-

spect to time on the interval [fy, f] in an inertial reference frame @ and writing

Ap = p(t) — p(t) for the change in the momentum of the particle, we obtain the

impulse—momentum principle:

It;10) = Ap. (72)

In words, the impulse of the force over the time interval [ty, t] is equal to the change
in the linear momentum of the particle during that time. We note that impulse has
the physical dimensions [9] = [FT] = [MLT!].

The mean value of the force acting over the time interval [#y, ] is determined
by the impulse. Consider first the one-dimensional graph shown in Fig. 7.1 for a
force F(t). According to the mean value theorem of integral calculus, there exists
a value of ¢, say t*, such that

t
f F@t)dt = F(t*)At, (7.3)
fo

wherein fy < t* <t and At =t — . Geometrically, (7.3) shows that the area
under the F(¢) curve on [y, t]in Fig. 7.1 is equal to the area on [#o, ] of a rectangle
of height F(¢*). The value F(t*) is the average value of F(t) on [to, t]. The same
formula (7.3) may be applied to each force component. Therefore, more generally,
the average value F* of the force F(¢) on the interval [fy, 7] is defined by

I(t10) _ Ap
At At

1 t
F'=— | F()dt = 7.4
A f:o (®) (7.4)
wherein (7.1) and (7.2) are introduced.
This result shows that although we may not know the actual impulsive force
acting-onsthe paticles-its-average-value.on the interval At is determined by the
change in the linear momentum of the particle during that interval. Moreover, it is
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seen that in the limit as ty — ¢, (7.4) returns the rule (5.34). The following example
illustrates an average force calculation.

Example 7.1. A projectile S weighing 50 Ib strikes a concrete bunker with a
normal velocity of 1288 ft/sec (878 mph). The projectile imbeds itself in the wall
and comes to rest in 1072 sec. What is the average force exerted on the wall by the
projectile during this time?

Solution. The change in the linear momentum of the projectile is

50
Ap = —3—2-2—(1288)n = —2000n slug - ft/sec, (7.5a)

in which n is the unit normal vector directed into the wall. The average force F
acting on the projectile in the time At = 1072 sec is given by the last ratio in (7.4),
and with (7.5a) we thus obtain
F} = —?(())—(_)Sn = -2 x 10°n1b = —100n tons. (7.5b)
This estimates the total force exerted on the projectile by the concrete wall and
gravity. Of course, the weight of the projectile compared with the total impulsive
force (7.5b) is negligible, and hence the average force exerted on the wall by
the projectile may be estimated by the equal and oppositely directed force F%, =
100n tons. If the action time increment is smaller, the average force acting on the
projectile or the penetration force acting on the wall grows larger. U

7.2.1. Instantaneous Impulse and Momentum

There are many physical situations in which a change in velocity induced by
the exchange of deformation energy occurs so suddenly that it is very difficult to
observe the transition from one state to another. When a cue strikes a billiard ball,
for example, the ball experiences a finite change in velocity during an infinites-
imally short interval of time. There is also no observable change in its position
during the impact time. The same thing is true when a bullet strikes a block of
wood and when an automobile impacts a pole. In these cases the impulse occurs
virtually instantaneously. This physical idea of an instantaneous impulsive action
is first characterized mathematically. Afterwards, the use of singularity functions
to define the impulsive force and the instantaneous impulse are described.

In general, the average value F* of the total force conveys no information
about the nature or maximum intensity of the actual applied force F(¢), rather,
it provides only an estimate of F(¢) that is independent of the duration of its
application. A one-dimensional triangular loading, for example, has a mean value
equal to one-half the height of the triangle regardless of the length of its time base.
Seyansaveragevalue.estimate.of F(#):might not be a very good one. On the other
hand, when the impulse is almost instantaneous it is reasonable to imagine that the
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Figure 7.2. Graphical models of an almost instantaneous impulse and an ideal instantaneous impulse.

force—time graph, as shown in Fig. 7.2a for the one-dimensional case, is closely
approximated by a rectangular step function. In this instance, the mean value F*
approximates very closely the extreme intensity F(f) of the actual applied force.
Of course, the impulse-momentum principle (7.2) holds for all time intervals Az,
large or small.

Furthermore, the particle’s displacement Ax = x(t) — x(#y) during any time
interval At =t — fyis related to the average value v* of its velocity v in accordance
with the relation

t
AX = f v()dt = v*At. (7.6)
fo

Therefore, if a particle experiences a finite change in velocity in an infinitesimal
time interval, it follows from (7.6) t